125 research outputs found

    Missionary Directory - Churches of Christ: Number Two, March 1966

    Get PDF
    A directory of American Church of Christ missionaries around the world. Entries include name, address, city, and country. Dedication and foreword by Jimmie Lovell.https://digitalcommons.acu.edu/crs_books/1457/thumbnail.jp

    Directory of American Missionaries: Number One, June 1965

    Get PDF
    A directory of American Church of Christ missionaries around the world. Each entry includes name, city, address, and country. Foreword by Alan Bryan, Jimmie Lovell, and Archie Luper.https://digitalcommons.acu.edu/crs_books/1456/thumbnail.jp

    The realities of storing carbon dioxide - A response to CO2 storage capacity issues raised by Ehlig-Economides & Economides

    Get PDF
    In a recent publication, Ehlig-Economides & Economides (2010) have sought to demonstrate that carbon dioxide capture and storage (CCS) is not technically or economically feasible, based on a supposed lack of underground storage capacity. We consider this to be a serious misrepresentation of the scientific, engineering and operational facts surrounding CCS. Ehlig-Economides & Economides raise a number of storage related issues: reservoir boundaries, capacity, pressure management, storage integrity, dissolution and storage in depleted reservoirs. We take each one in turn, highlighting specific errors in the paper but also drawing attention to more general background issues. Finally, we discuss in more detail some inconsistencies in the paper surrounding the reservoir engineering calculations

    The Radio Variability of the Gravitational Lens PMN J1838-3427

    Full text link
    We present the results of a radio variability study of the gravitational lens PMN J1838-3427. Our motivation was to determine the Hubble constant by measuring the time delay between variations of the two quasar images. We monitored the system for 4 months (approximately 5 times longer than the expected delay) using the Australia Telescope Compact Array at 9 GHz. Although both images were variable on a time scale of a few days, no correlated intrinsic variability could be identified, and therefore no time delay could be measured. Notably, the fractional variation of the fainter image (8%) was greater than that of the brighter image (4%), whereas lensed images of a point source would have the same fractional variation. This effect can be explained, at least in part, as the refractive scintillation of both images due to the turbulent interstellar medium of the Galaxy.Comment: To appear in AJ (8 pages, including 4 figures

    A Hierarchy of Normalizing Flows for Modelling the Galaxy-Halo Relationship

    Full text link
    Using a large sample of galaxies taken from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project, a suite of hydrodynamic simulations varying both cosmological and astrophysical parameters, we train a normalizing flow (NF) to map the probability of various galaxy and halo properties conditioned on astrophysical and cosmological parameters. By leveraging the learnt conditional relationships we can explore a wide range of interesting questions, whilst enabling simple marginalisation over nuisance parameters. We demonstrate how the model can be used as a generative model for arbitrary values of our conditional parameters; we generate halo masses and matched galaxy properties, and produce realisations of the halo mass function as well as a number of galaxy scaling relations and distribution functions. The model represents a unique and flexible approach to modelling the galaxy-halo relationship.Comment: 8 pages, 2 figures, accepted for ICML 2023 Workshop on Machine Learning for Astrophysic

    Structure–activity relationship of ipglycermide binding to phosphoglycerate mutases

    Get PDF
    Catalysis of human phosphoglycerate mutase is dependent on a 2,3-bisphosphoglycerate cofactor (dPGM), whereas the nonhomologous isozyme in many parasitic species is cofactor independent (iPGM). This mechanistic and phylogenetic diversity offers an opportunity for selective pharmacologic targeting of glycolysis in disease-causing organisms. We previously discovered ipglycermide, a potent inhibitor of iPGM, from a large combinatorial cyclic peptide library. To fully delineate the ipglycermide pharmacophore, herein we construct a detailed structure–activity relationship using 280 substituted ipglycermide analogs. Binding affinities of these analogs to immobilized Caenorhabditis elegans iPGM, measured as fold enrichment relative to the index residue by deep sequencing of an mRNA display library, illuminated the significance of each amino acid to the pharmacophore. Using cocrystal structures and binding kinetics, we show that the high affinity of ipglycermide for iPGM orthologs, from Brugia malayi, Onchocerca volvulus, Dirofilaria immitis, and Escherichia coli, is achieved by a codependence between (1) the off-rate mediated by the macrocycle Cys14 thiolate coordination to an active-site Zn2+ in the iPGM phosphatase domain and (2) shape complementarity surrounding the macrocyclic core at the phosphotransferase–phosphatase domain interface. Our results show that the high-affinity binding of ipglycermide to iPGMs freezes these structurally dynamic enzymes into an inactive, stable complex

    The Milky Way's bright satellites as an apparent failure of LCDM

    Full text link
    We use the Aquarius simulations to show that the most massive subhalos in galaxy-mass dark matter halos in LCDM are grossly inconsistent with the dynamics of the brightest Milky Way dwarf spheroidal galaxies. While the best-fitting hosts of the dwarf spheroidals all have 12 < Vmax < 25 km/s, LCDM simulations predict at least ten subhalos with Vmax > 25 km/s. These subhalos are also among the most massive at earlier times, and significantly exceed the UV suppression mass back to z ~ 10. No LCDM-based model of the satellite population of the Milky Way explains this result. The problem lies in the satellites' densities: it is straightforward to match the observed Milky Way luminosity function, but doing so requires the dwarf spheroidals to have dark matter halos that are a factor of ~5 more massive than is observed. Independent of the difficulty in explaining the absence of these dense, massive subhalos, there is a basic tension between the derived properties of the bright Milky Way dwarf spheroidals and LCDM expectations. The inferred infall masses of these galaxies are all approximately equal and are much lower than standard LCDM predictions for systems with their luminosities. Consequently, their implied star formation efficiencies span over two orders of magnitude, from 0.2% to 20% of baryons converted into stars, in stark contrast with expectations gleaned from more massive galaxies. We explore possible solutions to these problems within the context of LCDM and find them to be unconvincing. In particular, we use controlled simulations to demonstrate that the small stellar masses of the bright dwarf spheroidals make supernova feedback an unlikely explanation for their low inferred densities.Comment: 18 pages, 10 figures; matches version published in MNRA

    Climate-smart agriculture global research agenda: Scientific basis for action

    Get PDF
    Background: Climate-smart agriculture (CSA) addresses the challenge of meeting the growing demand for food, fibre and fuel, despite the changing climate and fewer opportunities for agricultural expansion on additional lands. CSA focuses on contributing to economic development, poverty reduction and food security; maintaining and enhancing the productivity and resilience of natural and agricultural ecosystem functions, thus building natural capital; and reducing trade-offs involved in meeting these goals. Current gaps in knowledge, work within CSA, and agendas for interdisciplinary research and science-based actions identified at the 2013 Global Science Conference on Climate-Smart Agriculture (Davis, CA, USA) are described here within three themes: (1) farm and food systems, (2) landscape and regional issues and (3) institutional and policy aspects. The first two themes comprise crop physiology and genetics, mitigation and adaptation for livestock and agriculture, barriers to adoption of CSA practices, climate risk management and energy and biofuels (theme 1); and modelling adaptation and uncertainty, achieving multifunctionality, food and fishery systems, forest biodiversity and ecosystem services, rural migration from climate change and metrics (theme 2). Theme 3 comprises designing research that bridges disciplines, integrating stakeholder input to directly link science, action and governance. Outcomes: In addition to interdisciplinary research among these themes, imperatives include developing (1) models that include adaptation and transformation at either the farm or landscape level; (2) capacity approaches to examine multifunctional solutions for agronomic, ecological and socioeconomic challenges; (3) scenarios that are validated by direct evidence and metrics to support behaviours that foster resilience and natural capital; (4) reductions in the risk that can present formidable barriers for farmers during adoption of new technology and practices; and (5) an understanding of how climate affects the rural labour force, land tenure and cultural integrity, and thus the stability of food production. Effective work in CSA will involve stakeholders, address governance issues, examine uncertainties, incorporate social benefits with technological change, and establish climate finance within a green development framework. Here, the socioecological approach is intended to reduce development controversies associated with CSA and to identify technologies, policies and approaches leading to sustainable food production and consumption patterns in a changing climate
    • …
    corecore