61 research outputs found

    Marine viruses:key players in marine ecosystems

    Get PDF
    Viruses were recognized as the causative agents of fish diseases, such as infectious pancreatic necrosis and Oregon sockeye disease, in the early 1960s [1], and have since been shown to be responsible for diseases in all marine life from bacteria to protists, mollusks, crustaceans, fish and mammals [2].[...

    Shift from Carbon Flow through the Microbial Loop to the Viral Shunt in Coastal Antarctic Waters during Austral Summer

    Get PDF
    The relative flow of carbon through the viral shunt and the microbial loop is a pivotal factor controlling the contribution of secondary production to the food web and to rates of nutrient remineralization and respiration. The current study examines the significance of these processes in the coastal waters of the Antarctic during the productive austral summer months. Throughout the study a general trend towards lower bacterioplankton and heterotrophic nanoflagellate (HNF) abundances was observed, whereas virioplankton concentration increased. A corresponding decline of HNF grazing rates and shift towards viral production, indicative of viral infection, was measured. Carbon flow mediated by HNF grazing decreased by more than half from 5.7 µg C L−1 day−1 on average in December and January to 2.4 µg C L−1 day−1 in February. Conversely, carbon flow through the viral shunt increased substantially over the study from on average 0.9 µg C L−1 day−1 in December to 7.6 µg C L−1 day−1 in February. This study shows that functioning of the coastal Antarctic microbial community varied considerably over the productive summer months. In early summer, the system favors transfer of matter and energy to higher trophic levels via the microbial loop, however towards the end of summer carbon flow is redirected towards the viral shunt, causing a switch towards more recycling and therefore increased respiration and regeneration

    Plasticity in dormancy behaviour of Calanoides acutus in Antarctic coastal waters

    Get PDF
    Copepods that enter dormancy, such as Calanoides acutus, are key primary consumers in Southern Ocean food webs where they convert a portion of the seasonal phytoplankton biomass into a longer-term energetic and physiological resource as wax ester (WE) reserves. We studied the seasonal abundance and lipid profiles of pre-adult and adult C. acutus in relation to phytoplankton dynamics on the Western Antarctic Peninsula. Initiation of dormancy occurred when WE unsaturation was relatively high, and chlorophyll a (Chl a) concentrations, predominantly attributable to diatoms, were reducing. Declines in WE unsaturation during the winter may act as a dormancy timing mechanism with increased Chl a concentrations likely to promote sedimentation that results in a teleconnection between the surface and deep water inducing ascent. A late summer diatom bloom was linked to early dormancy termination of females and a second spawning event. The frequency and duration of high biomass phytoplankton blooms may have consequences for the lifespan of the iteroparous C. acutus females (either 1 or 2 years) if limited by a total of two main spawning events. Late summer recruits, generated by a second spawning event, likely benefitted from lower predation and high phytoplankton food availability. The flexibility of copepods to modulate their life-cycle strategy in response to bottom-up and top-down conditions enables individuals to optimize their probability of reproductive success in the very variable environment prevalent in the Southern Ocean

    Diapycnal mixing across the photic zone of the NE Atlantic

    Get PDF
    Variable physical conditions such as vertical turbulent exchange, internal wave, and mesoscale eddy action affect the availability of light and nutrients for phytoplankton (unicellular algae) growth. It is hypothesized that changes in ocean temperature may affect ocean vertical density stratification, which may hamper vertical exchange. In order to quantify variations in physical conditions in the northeast Atlantic Ocean, we sampled a latitudinal transect along 17 ± 5∘ W between 30 and 63∘ N in summer. A shipborne conductivity–temperature–depth (CTD) instrumented package was used with a custom-made modification of the pump inlet to minimize detrimental effects of ship motions on its data. Thorpe-scale analysis was used to establish turbulence values for the upper 500 m from three to six profiles obtained in a short CTD yo-yo, 3 to 5 h after local sunrise. From south to north, average temperature decreased together with stratification while turbulence values weakly increased or remained constant. Vertical turbulent nutrient fluxes did not vary significantly with stratification and latitude. This apparent lack of correspondence between turbulent mixing and temperature is likely due to internal waves breaking (increased stratification can support more internal waves), acting as a potential feedback mechanism. As this feedback mechanism mediates potential physical environment changes in temperature, global surface ocean warming may not affect the vertical nutrient fluxes to a large degree. We urge modellers to test this deduction as it could imply that the future summer phytoplankton productivity in stratified oligotrophic waters would experience little alterations in nutrient input from deeper waters

    Cyanophage Propagation in the Freshwater Cyanobacterium Phormidium Is Constrained by Phosphorus Limitation and Enhanced by Elevated pCO2

    Get PDF
    Intensification of human activities has led to changes in the availabilities of CO2 and nutrients in freshwater ecosystems, which may greatly alter the physiological status of phytoplankton. Viruses require hosts for their reproduction and shifts in phytoplankton host physiology through global environmental change may thus affect viral infections as well. Various studies have investigated the impacts of single environmental factors on phytoplankton virus propagation, yet little is known about the impacts of multiple factors, particularly in freshwater systems. We therefore tested the combined effects of phosphorus limitation and elevated pCO2 on the propagation of a cyanophage infecting a freshwater cyanobacterium. To this end, we cultured Phormidium in P-limited chemostats under ambient (400 μatm) and elevated (800 μatm) pCO2 at growth rates of 0.6, 0.3, and 0.05 d-1. Host C:P ratios generally increased with strengthened P-limitation and with elevated pCO2. Upon host steady state conditions, virus growth characteristics were obtained in separate infection assays where hosts were infected by the double-stranded DNA cyanophage PP. Severe P-limitation (host growth 0.05 d-1) led to a 85% decrease in cyanophage production rate and a 73% decrease in burst size compared to the 0.6 d-1 grown P-limited cultures. Elevated pCO2 induced a 96% increase in cyanophage production rate and a 57% increase in burst size, as well as an 85% shorter latent period as compared to ambient pCO2 at the different host growth rates. In addition, elevated pCO2 caused a decrease in the plaquing efficiency and an increase in the abortion percentage for the 0.05 d-1 P-limited treatment, while the plaquing efficiency increased for the 0.6 d-1 P-limited cultures. Together, our results demonstrate interactive effects of elevated pCO2 and P-limitation on cyanophage propagation, and show that viral propagation is generally constrained by P-limitation but enhanced with elevated pCO2. Our findings indicate that global change will likely have a severe impact on virus growth characteristics and thereby on the control of cyanobacterial hosts in freshwater ecosystems

    Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions

    Get PDF
    The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm (similar to 55 m(3)) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO(2)) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO(2)-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO(2) treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO(2) as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO(2) impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO(2)-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean.Peer reviewe

    Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans

    Get PDF
    Marine viruses are key drivers of host diversity, population dynamics and biogeochemical cycling and contribute to the daily flux of billions of tons of organic matter. Despite recent advancements in metagenomics, much of their biodiversity remains uncharacterized. Here we report a data set of 27,346 marine virome contigs that includes 44 complete genomes. These outnumber all currently known phage genomes in marine habitats and include members of previously uncharacterized lineages. We designed a new method for host prediction based on co-occurrence associations that reveals these viruses infect dominant members of the marine microbiome such as Prochlorococcus and Pelagibacter. A negative association between host abundance and the virus-to-host ratio supports the recently proposed Piggyback-the-Winner model of reduced phage lysis at higher host densities. An analysis of the abundance patterns of viruses throughout the oceans revealed how marine viral communities adapt to various seasonal, temperature and photic regimes according to targeted hosts and the diversity of auxiliary metabolic genes.CAPESCNPqFAPERJCiencia sem fronteiras programUniv Fed Rio de Janeiro, IB, BR-21944970 Rio de Janeiro, BrazilRadboud Univ Nijmegen, Radboud Inst Mol Life Sci, CMBI, Med Ctr, NL-6500 HB Nijmegen, NetherlandsUniv Utrecht, Theoret Biol & Bioinformat, NL-3584 CH Utrecht, NetherlandsSan Diego State Univ, Dept Biol, San Diego, CA 92182 USAUniv Fed Sao Paulo UNIFESP, Dept Ciencias Mar, BR-11070100 Baixada Santista, BrazilNIOZ Royal Netherlands Inst Sea Res, Dept Marine Microbiol & Biogeochem, POB 59, NL-1790 AB Den Burg, NetherlandsUniv Utrecht, POB 59, NL-1790 AB Den Burg, NetherlandsUniv Amsterdam, Dept Aquat Microbiol, IBED, NL-1090 GE Amsterdam, NetherlandsUniv Fed Rio de Janeiro, COPPE, SAGE, BR-21941950 Rio de Janeiro, BrazilUniv Fed Sao Paulo UNIFESP, Dept Ciencias Mar, BR-11070100 Baixada Santista, BrazilCAPESCNPqFAPERJCiencia sem fronteiras program: 864.14.004Web of Scienc

    Seasonal dynamics and diversity of Antarctic marine viruses reveal a novel viral seascape

    Get PDF
    The Southern Ocean microbial ecosystem, with its pronounced seasonal shifts, is vulnerable to the impacts of climate change. Since viruses are key modulators of microbial abundance, diversity, and evolution, we need a better understanding of the effects of seasonality on the viruses in this region. Our comprehensive exploration of DNA viral diversity in the Southern Ocean reveals a unique and largely uncharted viral landscape, of which 75% was previously unidentified in other oceanic areas. We uncover novel viral taxa at high taxonomic ranks, expanding our understanding of crassphage, polinton-like virus, and virophage diversity. Nucleocytoviricota viruses represent an abundant and diverse group of Antarctic viruses, highlighting their potential as important regulators of phytoplankton population dynamics. Our temporal analysis reveals complex seasonal patterns in marine viral communities (bacteriophages, eukaryotic viruses) which underscores the apparent interactions with their microbial hosts, whilst deepening our understanding of their roles in the world’s most sensitive and rapidly changing ecosystem

    Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment

    Get PDF
    About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient (similar to 370 mu atm) to high (similar to 1200 mu atm), were set up in mesocosm bags (similar to 55m(3)). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol Cm-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by similar to 7% in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was similar to 100 mmol C m(-2) day(-1), from which 75-95% was respired, similar to 1% ended up in the TPC (including export), and 5-25% was added to the DOC pool. During phase II, the respiration loss increased to similar to 100% of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95% of GPP) in the highest CO2 treatment. Bacterial production was similar to 30% lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The "extra" organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification.Peer reviewe

    Variability and Change in the West Antarctic Peninsula Marine System: Research Priorities and Opportunities

    Get PDF
    The west Antarctic Peninsula (WAP) region has undergone significant changes in temperature and seasonal ice dynamics since the mid-twentieth century, with strong impacts on the regional ecosystem, ocean chemistry and hydrographic properties. Changes to these long-term trends of warming and sea ice decline have been observed in the 21st century, but their consequences for ocean physics, chemistry and the ecology of the high-productivity shelf ecosystem are yet to be fully established. The WAP shelf is important for regional krill stocks and higher trophic levels, whilst the degree of variability and change in the physical environment and documented biological and biogeochemical responses make this a model system for how climate and sea ice changes might restructure high-latitude ecosystems. Although this region is arguably the best-measured and best-understood shelf region around Antarctica, significant gaps remain in spatial and temporal data capable of resolving the atmosphere-ice-ocean-ecosystem feedbacks that control the dynamics and evolution of this complex polar system. Here we summarise the current state of knowledge regarding the key mechanisms and interactions regulating the physical, biogeochemical and biological processes at work, the ways in which the shelf environment is changing, and the ecosystem response to the changes underway. We outline the overarching cross-disciplinary priorities for future research, as well as the most important discipline-specific objectives. Underpinning these priorities and objectives is the need to better define the causes, magnitude and timescales of variability and change at all levels of the system. A combination of traditional and innovative approaches will be critical to addressing these priorities and developing a co-ordinated observing system for the WAP shelf, which is required to detect and elucidate change into the future
    • …
    corecore