5,465 research outputs found
Comparison between mirror Langmuir probe and gas puff imaging measurements of intermittent fluctuations in the Alcator C-Mod scrape-off layer
Statistical properties of the scrape-off layer (SOL) plasma fluctuations are
studied in ohmically heated plasmas in the Alcator C-Mod tokamak. For the first
time, plasma fluctuations as well as parameters that describe the fluctuations
are compared across measurements from a mirror Langmuir probe (MLP) and from
gas-puff imaging (GPI) that sample the same plasma discharge. This comparison
is complemented by an analysis of line emission time-series data, synthesized
from the MLP electron density and temperature measurements. The fluctuations
observed by the MLP and GPI typically display relative fluctuation amplitudes
of order unity together with positively skewed and flattened probability
density functions. Such data time series are well described by an established
stochastic framework which model the data as a superposition of uncorrelated,
two-sided exponential pulses. The most important parameter of the process is
the intermittency parameter, {\gamma} = {\tau}d / {\tau}w where {\tau}d denotes
the duration time of a single pulse and {\tau}w gives the average waiting time
between consecutive pulses. Here we show, using a new deconvolution method,
that these parameters can be consistently estimated from different statistics
of the data. We also show that the statistical properties of the data sampled
by the MLP and GPI diagnostic are very similar. Finally, a comparison of the
GPI signal to the synthetic line-emission time series suggests that the
measured emission intensity can not be explained solely by a simplified model
which neglects neutral particle dynamics
Orientifolds in N=2 Liouville Theory and its Mirror
We consider unoriented strings in the supersymmetric SL(2,R)/U(1) coset,
which describes the two-dimensional Euclidean black hole, and its mirror dual
N=2 Liouville theory. We analyze the orientifolds of these theories from
several complementary points of view: the parity symmetries of the worldsheet
actions, descent from known AdS_3 parities, and the modular bootstrap method
(in some cases we can also check our results against known constraints coming
from the conformal bootstrap method). Our analysis extends previous work on
orientifolds in Liouville theory, the AdS_3 and SU(2) WZW models and minimal
models. Compared to these cases, we find that the orientifolds of the two
dimensional Euclidean black hole exhibit new intriguing features. Our results
are relevant for the study of orientifolds in the neighborhood of NS5-branes
and for the engineering of four-dimensional chiral gauge theories and gauge
theories with SO and Sp gauge groups with suitable configurations of D-branes
and orientifolds. As an illustration, we discuss an example related to a
configuration of D4-branes and O4-planes in the presence of two parallel
fivebranes.Comment: 47 pages, 2 figures; v2 typos fixed, refs added, improved discussion
of Hanany-Witten setup
MIMAC: MIcro-tpc MAtrix of Chambers for dark matter directional detection
Directional detection of non-baryonic Dark Matter is a promising search
strategy for discriminating WIMP events from neutrons, the ultimate background
for dark matter direct detection. This strategy requires both a precise
measurement of the energy down to a few keV and 3D reconstruction of tracks
down to a few mm. The MIMAC (MIcro-tpc MAtrix of Chambers) collaboration has
developed in the last years an original prototype detector based on the direct
coupling of large pixelized micromegas with a special developed fast
self-triggered electronics showing the feasibility of a new generation of
directional detectors. The first bi-chamber prototype has been installed at
Modane, underground laboratory in June 2012. The first undergournd background
events, the gain stability and calibration are shown. The first spectrum of
nuclear recoils showing 3D tracks coming from the radon progeny is presented.Comment: Proceedings of the 4th International Conference on Directional Dark
Matter Detection CYGNUS2013, held in Toyoma (Japan), June 201
A quantum McKay correspondence for fractional 2p-branes on LG orbifolds
We study fractional 2p-branes and their intersection numbers in non-compact
orbifolds as well the continuation of these objects in Kahler moduli space to
coherent sheaves in the corresponding smooth non-compact Calabi-Yau manifolds.
We show that the restriction of these objects to compact Calabi-Yau
hypersurfaces gives the new fractional branes in LG orbifolds constructed by
Ashok et. al. in hep-th/0401135. We thus demonstrate the equivalence of the
B-type branes corresponding to linear boundary conditions in LG orbifolds,
originally constructed in hep-th/9907131, to a subset of those constructed in
LG orbifolds using boundary fermions and matrix factorization of the
world-sheet superpotential. The relationship between the coherent sheaves
corresponding to the fractional two-branes leads to a generalization of the
McKay correspondence that we call the quantum McKay correspondence due to a
close parallel with the construction of branes on non-supersymmetric orbifolds.
We also provide evidence that the boundary states associated to these branes in
a conformal field theory description corresponds to a sub-class of the boundary
states associated to the permutation branes in the Gepner model associated with
the LG orbifold.Comment: LaTeX2e, 1+39 pages, 3 figures (v2) refs added, typos and report no.
correcte
D-brane Categories for Orientifolds -- The Landau-Ginzburg Case
We construct and classify categories of D-branes in orientifolds based on
Landau-Ginzburg models and their orbifolds. Consistency of the worldsheet
parity action on the matrix factorizations plays the key role. This provides
all the requisite data for an orientifold construction after embedding in
string theory. One of our main results is a computation of topological field
theory correlators on unoriented worldsheets, generalizing the formulas of Vafa
and Kapustin-Li for oriented worldsheets, as well as the extension of these
results to orbifolds. We also find a doubling of Knoerrer periodicity in the
orientifold context.Comment: 45 pages, 6 figure
Tree-Level Stability Without Spacetime Fermions: Novel Examples in String Theory
Is perturbative stability intimately tied with the existence of spacetime
fermions in string theory in more than two dimensions? Type 0'B string theory
in ten-dimensional flat space is a rare example of a non-tachyonic,
non-supersymmetric string theory with a purely bosonic closed string spectrum.
However, all known type 0' constructions exhibit massless NSNS tadpoles
signaling the fact that we are not expanding around a true vacuum of the
theory. In this note, we are searching for perturbatively stable examples of
type 0' string theory without massless tadpoles in backgrounds with a spatially
varying dilaton. We present two examples with this property in non-critical
string theories that exhibit four- and six-dimensional Poincare invariance. We
discuss the D-branes that can be embedded in this context and the type of gauge
theories that can be constructed in this manner. We also comment on the
embedding of these non-critical models in critical string theories and their
holographic (Little String Theory) interpretation and propose a general
conjecture for the role of asymptotic supersymmetry in perturbative string
theory.Comment: harvmac, 29 pages; v2 minor changes, version to appear in JHE
Travelling-wave nuclear magnetic resonance
Nuclear magnetic resonance (NMR) is one of the most versatile experimental methods in chemistry, physics and biology, providing insight into the structure and dynamics of matter at the molecular scale. Its imaging variant-magnetic resonance imaging (MRI)-is widely used to examine the anatomy, physiology and metabolism of the human body. NMR signal detection is traditionally based on Faraday induction in one or multiple radio-frequency resonators that are brought into close proximity with the sample. Alternative principles involving structured-material flux guides, superconducting quantum interference devices, atomic magnetometers, Hall probes or magnetoresistive elements have been explored. However, a common feature of all NMR implementations until now is that they rely on close coupling between the detector and the object under investigation. Here we show that NMR can also be excited and detected by long-range interaction, relying on travelling radio-frequency waves sent and received by an antenna. One benefit of this approach is more uniform coverage of samples that are larger than the wavelength of the NMR signal-an important current issue in MRI of humans at very high magnetic fields. By allowing a significant distance between the probe and the sample, travelling-wave interaction also introduces new possibilities in the design of NMR experiments and systems
Orientifolds of Gepner Models
We systematically construct and study Type II Orientifolds based on Gepner
models which have N=1 supersymmetry in 3+1 dimensions. We classify the parity
symmetries and construct the crosscap states. We write down the conditions that
a configuration of rational branes must satisfy for consistency (tadpole
cancellation and rank constraints) and spacetime supersymmetry. For certain
cases, including Type IIB orientifolds of the quintic and a two parameter
model, one can find all solutions in this class. Depending on the parity, the
number of vacua can be large, of the order of 10^{10}-10^{13}. For other
models, it is hard to find all solutions but special solutions can be found --
some of them are chiral. We also make comparison with the large volume regime
and obtain a perfect match. Through this study, we find a number of new
features of Type II orientifolds, including the structure of moduli space and
the change in the type of O-planes under navigation through non-geometric
phases.Comment: 142 page
Standard and Null Weak Values
Weak value (WV) is a quantum mechanical measurement protocol, proposed by
Aharonov, Albert, and Vaidman. It consists of a weak measurement, which is
weighed in, conditional on the outcome of a later, strong measurement. Here we
define another two-step measurement protocol, null weak value (NVW), and point
out its advantages as compared to WV. We present two alternative derivations of
NWVs and compare them to the corresponding derivations of WVs.Comment: 11 pages, 2 figures. To appear in Quantum Theory: A Two-Time Success
Story: Yakir Aharonov Festschrif
Classical simulation of entanglement swapping with bounded communication
Entanglement appears under two different forms in quantum theory, namely as a
property of states of joint systems and as a property of measurement
eigenstates in joint measurements. By combining these two aspects of
entanglement, it is possible to generate nonlocality between particles that
never interacted, using the protocol of entanglement swapping. We show that
even in the more constraining bilocal scenario where distant sources of
particles are assumed to be independent, i.e. to share no prior randomness,
this process can be simulated classically with bounded communication, using
only 9 bits in total. Our result thus provides an upper bound on the
nonlocality of the process of entanglement swapping.Comment: 6 pages, 1 figur
- …