22 research outputs found

    A mixed effect model approach for assessing land‐based mitigation in Integrated Assessment Models: a regional perspective

    No full text
    International audienceGiven the prospects of low short- term emissions reduction, carbon removals (CDRs) are expected to play an important role in achieving ambitious mitigation targets in future scenarios of integrated assessment models (IAMs), particularly Bioenergy with Carbon Capture and Storage (BECCS). In this paper, we explore the IAMC 1.5 data-base to depict the characteristics of the two main CDR options present in mitigation scenarios: BECCS and afforestation/reforestation. We apply a linear mixed- effect model to capture the specific regional and cross- IAM effects. Results reveal that the distribution of BECCS and afforestation deployment differs across IAMs and regions and, to a second extent, time. BECCS is preferred in the scenarios not for its ability to expand energy use but actually because it appears as an alternative to afforestation, which is associated with a decrease in energy use. However, the regional distribution of CDR deployment does not show a common pattern across scenarios and IAMs. Therefore, a more comprehensive investigation is needed before it can support policy proposals

    Antiviral activity of Bay 41-4109 on hepatitis B virus in humanized Alb-uPA/SCID mice.

    Get PDF
    Current treatments for HBV chronic carriers using interferon alpha or nucleoside analogues are not effective in all patients and may induce the emergence of HBV resistant strains. Bay 41-4109, a member of the heteroaryldihydropyrimidine family, inhibits HBV replication by destabilizing capsid assembly. The aim of this study was to determine the antiviral effect of Bay 41-4109 in a mouse model with humanized liver and the spread of active HBV. Antiviral assays of Bay 41-4109 on HepG2.2.15 cells constitutively expressing HBV, displayed an IC(50) of about 202 nM with no cell toxicity. Alb-uPA/SCID mice were transplanted with human hepatocytes and infected with HBV. Ten days post-infection, the mice were treated with Bay 41-4109 for five days. During the 30 days of follow-up, the HBV load was evaluated by quantitative PCR. At the end of treatment, decreased HBV viremia of about 1 log(10) copies/ml was observed. By contrast, increased HBV viremia of about 0.5 log(10) copies/ml was measured in the control group. Five days after the end of treatment, a rebound of HBV viremia occurred in the treated group. Furthermore, 15 days after treatment discontinuation, a similar expression of the viral capsid was evidenced in liver biopsies. Our findings demonstrate that Bay 41-4109 displayed antiviral properties against HBV in humanized Alb-uPA/SCID mice and confirm the usefulness of Alb-uPA/SCID mice for the evaluation of pharmaceutical compounds. The administration of Bay 41-4109 may constitute a new strategy for the treatment of patients in escape from standard antiviral therapy

    GHRH excess and blockade in X-LAG syndrome

    No full text
    X-linked acrogigantism (X-LAG) syndrome is a newly-described form of inheritable pituitary gigantism that begins in early childhood and is usually associated with markedly elevated growth hormone (GH) and prolactin secretion by mixed pituitary adenomas/hyperplasia. Microduplications on chromosome Xq26.3 including the GPR101 gene cause X-LAG syndrome. In individual cases random GH-releasing hormone (GHRH) levels have been elevated. We performed a series of hormonal profiles in a young female sporadic X-LAG syndrome patient and subsequently undertook in vitro studies of primary pituitary tumor culture following neurosurgical resection. The patient demonstrated consistently elevated circulating GHRH levels throughout preoperative testing, which was accompanied by marked GH and prolactin hypersecretion; GH demonstrated a paradoxical increase following TRH administration. In vitro, the pituitary cells showed baseline GH and prolactin release that was further stimulated by GHRH administration. Co-incubation with GHRH and the GHRH receptor antagonist, acetyl-(D-ArgÂČ)-GHRH (1-29) amide, blocked the GHRH-induced GH stimulation; the GHRH receptor antagonist alone significantly reduced GH release. Pasireotide, but not octreotide, inhibited GH secretion. A ghrelin receptor agonist and an inverse agonist led to modest, statistically significant increases and decreases in GH secretion, respectively. GHRH hypersecretion can accompany the pituitary abnormalities seen in X-LAG syndrome. These data suggest that the pathology of X-LAG syndrome may include hypothalamic dysregulation of GHRH secretion, which is in keeping with localization of GPR101 in the hypothalamus. Therapeutic blockade of GHRH secretion could represent a way to target the marked hormonal hypersecretion and overgrowth that characterizes X-LAG syndrome
    corecore