130 research outputs found

    Analyses of Victorian hog deer (axis porcinus) checking station data: demographics, body condition and time of harvest

    Get PDF
    This report looks into the sustainability and health of deer within Victoria\u27s regional areas. Hog Deer (Axis porcinus) are a popular and highly valued game species in Victoria, with licensed hunters permitted to harvest one male and one female during an annual hunting season during the month of April. All harvested deer must be tagged and presented at a checking station within 24 hours of harvest. A variety of morphological and biological data are recorded for each harvested animal during inspection at the checking stations. The objectives of this study were to (i) summarise biological data collected for all Hog Deer inspected at the four mainland checking stations during 1997–2011 (i.e. excluding Sunday Island, which is owned and managed by the Para Park Co-operative Game Reserve Limited), and (ii) provide recommendations for improving the usefulness of future data collection. A total of 1122 deer were presented at the mainland checking stations (70.4% male; 29.6% female) during 1997–2011, with annual totals ranging from 38 in 1999 to 111 in 2011. There was little evidence that the number or sex ratio of deer harvested annually changed substantially over the course of the study period. The overall percentages of deer harvested on public (52%) and private (48%) land also did not show any discernable trend during the study period. The ages of deer (estimated by molar eruption and tooth wear) ranged from 1 to 12 years for females and males. Although the age structures differed slightly for females and males, there was no evidence that this changed over the study period, although inconsistent recording of ages limited the opportunity for quantitative analyses of these data

    On the security of a new image encryption scheme based on chaotic map lattices

    Get PDF
    This paper reports a detailed cryptanalysis of a recently proposed encryption scheme based on the logistic map. Some problems are emphasized concerning the key space definition and the implementation of the cryptosystem using floating-point operations. It is also shown how it is possible to reduce considerably the key space through a ciphertext-only attack. Moreover, a timing attack allows the estimation of part of the key due to the existent relationship between this part of the key and the encryption/decryption time. As a result, the main features of the cryptosystem do not satisfy the demands of secure communications. Some hints are offered to improve the cryptosystem under study according to those requirements.Comment: 8 pages, 8 Figure

    A rapid non-destructive DNA extraction method for insects and other arthropods

    Get PDF
    Preparation of arthropods for morphological identification often damages or destroys DNA within the specimen. Conversely, DNA extraction methods often destroy the external physical characteristics essential for morphological identification. We have developed a rapid, simple and non-destructive DNA extraction technique for arthropod specimens. This technique was tested on four arthropod orders, using specimens that were fresh, preserved by air drying, stored in ethanol, or collected with sticky or propylene glycol traps. The technique could be completed in twenty minutes for Coleoptera, Diptera and Hemiptera, and two minutes for the subclass Acarina, without significant distortion, discolouration, or other damage to the specimens

    Place of death in patients with lung cancer: a retrospective cohort study from 2004-2013

    Get PDF
    Introduction: Many patients with cancer die in an acute hospital bed, which has been frequently identified as the least preferred location, with psychological and financial implications. This study looks at place and cause of death in patients with lung cancer and identifies which factors are associated with dying in an acute hospital bed versus at home. Methods and Findings: We used the National Lung Cancer Audit linked to Hospital Episode Statistics and Office for National Statistics data to determine cause and place of death in those with lung cancer; both overall and by cancer Network. We used multivariate logistic regression to compare features of those who died in an acute hospital versus those who died at home. Results: Of 143627 patients identified 40% (57678) died in an acute hospital, 29% (41957) died at home and 17% (24108) died in a hospice. Individual factors associated with death in an acute hospital bed compared to home were male sex, increasing age, poor performance status, social deprivation and diagnosis via an emergency route. There was marked variation between cancer Networks in place of death. The proportion of patients dying in an acute hospital ranged from 28% to 48%, with variation most notable in provision of hospice care (9% versus 33%). Cause of death in the majority was lung cancer (86%), with other malignancies, chronic obstructive pulmonary disease (COPD) and ischaemic heart disease (IHD) comprising 9% collectively. Conclusions: A substantial proportion of patients with lung cancer die in acute hospital beds and this is more likely with increasing age, male sex, social deprivation and in those with poor performance status. There is marked variation between Networks, suggesting a need to improve end-of-life planning in those at greatest risk, and to review the allocation of resources to provide more hospice beds, enhanced community support and ensure equal access

    MicroWalk: A Framework for Finding Side Channels in Binaries

    Full text link
    Microarchitectural side channels expose unprotected software to information leakage attacks where a software adversary is able to track runtime behavior of a benign process and steal secrets such as cryptographic keys. As suggested by incremental software patches for the RSA algorithm against variants of side-channel attacks within different versions of cryptographic libraries, protecting security-critical algorithms against side channels is an intricate task. Software protections avoid leakages by operating in constant time with a uniform resource usage pattern independent of the processed secret. In this respect, automated testing and verification of software binaries for leakage-free behavior is of importance, particularly when the source code is not available. In this work, we propose a novel technique based on Dynamic Binary Instrumentation and Mutual Information Analysis to efficiently locate and quantify memory based and control-flow based microarchitectural leakages. We develop a software framework named \tool~for side-channel analysis of binaries which can be extended to support new classes of leakage. For the first time, by utilizing \tool, we perform rigorous leakage analysis of two widely-used closed-source cryptographic libraries: \emph{Intel IPP} and \emph{Microsoft CNG}. We analyze 1515 different cryptographic implementations consisting of 112112 million instructions in about 105105 minutes of CPU time. By locating previously unknown leakages in hardened implementations, our results suggest that \tool~can efficiently find microarchitectural leakages in software binaries

    Rain-induced turbulence and air-sea gas transfer

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C07009, doi:10.1029/2008JC005008.Results from a rain and gas exchange experiment (Bio2 RainX III) at the Biosphere 2 Center demonstrate that turbulence controls the enhancement of the air-sea gas transfer rate (or velocity) k during rainfall, even though profiles of the turbulent dissipation rate ɛ are strongly influenced by near-surface stratification. The gas transfer rate scales with ɛ inline equation for a range of rain rates with broad drop size distributions. The hydrodynamic measurements elucidate the mechanisms responsible for the rain-enhanced k results using SF6 tracer evasion and active controlled flux technique. High-resolution k and turbulence results highlight the causal relationship between rainfall, turbulence, stratification, and air-sea gas exchange. Profiles of ɛ beneath the air-sea interface during rainfall, measured for the first time during a gas exchange experiment, yielded discrete values as high as 10−2 W kg−1. Stratification modifies and traps the turbulence near the surface, affecting the enhancement of the transfer velocity and also diminishing the vertical mixing of mass transported to the air-water interface. Although the kinetic energy flux is an integral measure of the turbulent input to the system during rain events, ɛ is the most robust response to all the modifications and transformations to the turbulent state that follows. The Craig-Banner turbulence model, modified for rain instead of breaking wave turbulence, successfully predicts the near-surface dissipation profile at the onset of the rain event before stratification plays a dominant role. This result is important for predictive modeling of k as it allows inferring the surface value of ɛ fundamental to gas transfer.This work was funded by a generous grant from the David and Lucile Packard Foundation and the Lamont-Doherty Earth Observatory Climate Center. Additional funding was provided by the National Science Foundation (OCE-05-26677) and the Office of Naval Research Young Investigator Program (N00014-04-1-0621)

    Chronic Stroke Sensorimotor Impairment Is Related to Smaller Hippocampal Volumes: An ENIGMA Analysis

    Get PDF
    Background. Persistent sensorimotor impairments after stroke can negatively impact quality of life. The hippocampus is vulnerable to poststroke secondary degeneration and is involved in sensorimotor behavior but has not been widely studied within the context of poststroke upper‐limb sensorimotor impairment. We investigated associations between non‐lesioned hippocampal volume and upper limb sensorimotor impairment in people with chronic stroke, hypothesizing that smaller ipsilesional hippocampal volumes would be associated with greater sensorimotor impairment. Methods and Results. Cross‐sectional T1‐weighted magnetic resonance images of the brain were pooled from 357 participants with chronic stroke from 18 research cohorts of the ENIGMA (Enhancing NeuoImaging Genetics through Meta‐Analysis) Stroke Recovery Working Group. Sensorimotor impairment was estimated from the FMA‐UE (Fugl‐Meyer Assessment of Upper Extremity). Robust mixed‐effects linear models were used to test associations between poststroke sensorimotor impairment and hippocampal volumes (ipsilesional and contralesional separately; Bonferroni‐corrected, P<0.025), controlling for age, sex, lesion volume, and lesioned hemisphere. In exploratory analyses, we tested for a sensorimotor impairment and sex interaction and relationships between lesion volume, sensorimotor damage, and hippocampal volume. Greater sensorimotor impairment was significantly associated with ipsilesional (P=0.005; β=0.16) but not contralesional (P=0.96; β=0.003) hippocampal volume, independent of lesion volume and other covariates (P=0.001; β=0.26). Women showed progressively worsening sensorimotor impairment with smaller ipsilesional (P=0.008; β=−0.26) and contralesional (P=0.006; β=−0.27) hippocampal volumes compared with men. Hippocampal volume was associated with lesion size (P<0.001; β=−0.21) and extent of sensorimotor damage (P=0.003; β=−0.15). Conclusions. The present study identifies novel associations between chronic poststroke sensorimotor impairment and ipsilesional hippocampal volume that are not caused by lesion size and may be stronger in women.S.-L.L. is supported by NIH K01 HD091283; NIH R01 NS115845. A.B. and M.S.K. are supported by National Health and Medical Research Council (NHMRC) GNT1020526, GNT1045617 (A.B.), GNT1094974, and Heart Foundation Future Leader Fellowship 100784 (A.B.). P.M.T. is supported by NIH U54 EB020403. L.A.B. is supported by the Canadian Institutes of Health Research (CIHR). C.M.B. is supported by NIH R21 HD067906. W.D.B. is supported by the Heath Research Council of New Zealand. J.M.C. is supported by NIH R00HD091375. A.B.C. is supported by NIH R01NS076348-01, Hospital Israelita Albert Einstein 2250-14, CNPq/305568/2016-7. A.N.D. is supported by funding provided by the Texas Legislature to the Lone Star Stroke Clinical Trial Network. Its contents are solely the responsibility of the authors and do not necessarily represent the of ficial views of the Government of the United States or the State of Texas. N.E.-B. is supported by Australian Research Council NIH DE180100893. W.F. is sup ported by NIH P20 GM109040. F.G. is supported by Wellcome Trust (093957). B.H. is funded by and NHMRC fellowship (1125054). S.A.K is supported by NIH P20 HD109040. F.B. is supported by Italian Ministry of Health, RC 20, 21. N.S. is supported by NIH R21NS120274. N.J.S. is supported by NIH/National Institute of General Medical Sciences (NIGMS) 2P20GM109040-06, U54-GM104941. S.R.S. is supported by European Research Council (ERC) (NGBMI, 759370). G.S. is supported by Italian Ministry of Health RC 18-19-20-21A. M.T. is sup ported by National Institute of Neurological Disorders and Stroke (NINDS) R01 NS110696. G.T.T. is supported by Temple University sub-award of NIH R24 –NHLBI (Dr Mickey Selzer) Center for Experimental Neurorehabilitation Training. N.J.S. is funded by NIH/National Institute of Child Health and Human Development (NICHD) 1R01HD094731-01A1
    corecore