157 research outputs found

    The Weak-Coupling Limit of 3D Simplicial Quantum Gravity

    Get PDF
    We investigate the weak-coupling limit, kappa going to infinity, of 3D simplicial gravity using Monte Carlo simulations and a Strong Coupling Expansion. With a suitable modification of the measure we observe a transition from a branched polymer to a crinkled phase. However, the intrinsic geometry of the latter appears similar to that of non-generic branched polymer, probable excluding the existence of a sensible continuum limit in this phase.Comment: 3 pages 4 figs. LATTICE99(Gravity

    Equivalence between various versions of the self-dual action of the Ashtekar formalism

    Full text link
    Different aspects of the self-dual (anti-self-dual) action of the Ashtekar canonical formalism are discussed. In particular, we study the equivalences and differences between the various versions of such an action. Our analysis may be useful for the development of an Ashtekar formalism in eight dimensions.Comment: 10 pages, Latex, minor correction

    Simulating Four-Dimensional Simplicial Gravity using Degenerate Triangulations

    Get PDF
    We extend a model of four-dimensional simplicial quantum gravity to include degenerate triangulations in addition to combinatorial triangulations traditionally used. Relaxing the constraint that every 4-simplex is uniquely defined by a set of five distinct vertexes, we allow triangulations containing multiply connected simplexes and distinct simplexes defined by the same set of vertexes. We demonstrate numerically that including degenerated triangulations substantially reduces the finite-size effects in the model. In particular, we provide a strong numerical evidence for an exponential bound on the entropic growth of the ensemble of degenerate triangulations, and show that a discontinuous crumpling transition is already observed on triangulations of volume N_4 ~= 4000.Comment: Latex, 8 pages, 4 eps-figure

    On the Absence of an Exponential Bound in Four Dimensional Simplicial Gravity

    Get PDF
    We have studied a model which has been proposed as a regularisation for four dimensional quantum gravity. The partition function is constructed by performing a weighted sum over all triangulations of the four sphere. Using numerical simulation we find that the number of such triangulations containing VV simplices grows faster than exponentially with VV. This property ensures that the model has no thermodynamic limit.Comment: 8 pages, 2 figure

    Phase Structure of Dynamical Triangulation Models in Three Dimensions

    Get PDF
    The dynamical triangulation model of three-dimensional quantum gravity is shown to have a line of transitions in an expanded phase diagram which includes a coupling mu to the order of the vertices. Monte Carlo renormalization group and finite size scaling techniques are used to locate and characterize this line. Our results indicate that for mu < mu1 ~ -1.0 the model is always in a crumpled phase independent of the value of the curvature coupling. For mu < 0 the results are in agreement with an approximate mean field treatment. We find evidence that this line corresponds to first order transitions extending to positive mu. However, the behavior appears to change for mu > mu2 ~ 2-4. The simplest scenario that is consistent with the data is the existence of a critical end point

    BSSN in Spherical Symmetry

    Full text link
    The BSSN (Baumgarte-Shapiro-Shibata-Nakamura) formulation of the Einstein evolution equations is written in spherical symmetry. These equations can be used to address a number of technical and conceptual issues in numerical relativity in the context of a single Schwarzschild black hole. One of the benefits of spherical symmetry is that the numerical grid points can be tracked on a Kruskal--Szekeres diagram. Boundary conditions suitable for puncture evolution of a Schwarzschild black hole are presented. Several results are shown for puncture evolution using a fourth--order finite difference implementation of the equations.Comment: This is the final version to be published in CQG. It contains much more information and detail than the original versio

    The Weak-Coupling Limit of Simplicial Quantum Gravity

    Get PDF
    In the weak-coupling limit, kappa_0 going to infinity, the partition function of simplicial quantum gravity is dominated by an ensemble of triangulations with the ratio N_0/N_D close to the upper kinematic limit. For a combinatorial triangulation of the D--sphere this limit is 1/D. Defining an ensemble of maximal triangulations, i.e. triangulations that have the maximal possible number of vertices for a given volume, we investigate the properties of this ensemble in three dimensions using both Monte Carlo simulations and a strong-coupling expansion of the partition function, both for pure simplicial gravity and a with a suitable modified measure. For the latter we observe a continuous phase transition to a crinkled phase and we investigate the fractal properties of this phase.Comment: 32 pages, latex2e + 17 eps file

    The Extended Loop Group: An Infinite Dimensional Manifold Associated with the Loop Space

    Get PDF
    A set of coordinates in the non parametric loop-space is introduced. We show that these coordinates transform under infinite dimensional linear representations of the diffeomorphism group. An extension of the group of loops in terms of these objects is proposed. The enlarged group behaves locally as an infinite dimensional Lie group. Ordinary loops form a subgroup of this group. The algebraic properties of this new mathematical structure are analized in detail. Applications of the formalism to field theory, quantum gravity and knot theory are considered.Comment: The resubmited paper contains the title and abstract, that were omitted in the previous version. 42 pages, report IFFI/93.0

    Classical Loop Actions of Gauge Theories

    Full text link
    Since the first attempts to quantize Gauge Theories and Gravity in the loop representation, the problem of the determination of the corresponding classical actions has been raised. Here we propose a general procedure to determine these actions and we explicitly apply it in the case of electromagnetism. Going to the lattice we show that the electromagnetic action in terms of loops is equivalent to the Wilson action, allowing to do Montecarlo calculations in a gauge invariant way. In the continuum these actions need to be regularized and they are the natural candidates to describe the theory in a ``confining phase''.Comment: LaTeX 14 page

    The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species

    Get PDF
    Genes in durophage intersection set at 15 dpf. This is a comma separated table of the genes in the 15 dpf durophage intersection set. Given are edgeR results for each pairwise comparison. Columns indicating whether a gene is included in the intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13 kb
    corecore