22 research outputs found

    Forest biomass diversion in the Sierra Nevada: Energy, economics and emissions

    Full text link
    As an alternative to open pile burning, use of forest wastes from fuel hazard reduction projects at Blodgett Forest Research Station for electricity production was shown to produce energy and emission benefits: energy (diesel fuel) expended for processing and transport was 2.5% of the biomass fuel (energy equivalent); based on measurements from a large pile burn, air emissions reductions were 98%-99% for PM2.5, CO (carbon monoxide), NMOC (nonmethane organic compounds), CH4 (methane) and BC (black carbon), and 20% for NOx and CO2-equivalent greenhouse gases. Due to transport challenges and delays, delivered cost was 70perbonedryton(BDT)−comprisedofcollectionandprocessing(70 per bone dry ton (BDT) - comprised of collection and processing (34/BDT) and transport (36/BDT)for79milesoneway−whichexceededthebiomassplantgatepriceof36/BDT) for 79 miles one way - which exceeded the biomass plant gate price of 45/BDT. Under typical conditions, the break-even haul distance would be approximately 30 miles one way, with a collection and processing cost of 30/BDTandatransportcostof30/BDT and a transport cost of 16/BDT. Revenue generated from monetization of the reductions in air emissions has the potential to make forest fuel reduction projects more economically viable

    Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein

    Get PDF
    Marine mussels secret protein-based adhesives, which enable them to anchor to various surfaces in a saline, intertidal zone. Mussel foot proteins (Mfps) contain a large abundance of a unique, catecholic amino acid, Dopa, in their protein sequences. Catechol offers robust and durable adhe-sion to various substrate surfaces and contributes to the curing of the adhesive plaques. In this article, we review the unique features and the key functionalities of Mfps, catechol chemistry, and strategies for preparing catechol-functionalized poly- mers. Specifically, we reviewed recent findings on the contributions of various features of Mfps on interfacial binding, which include coacervate formation, surface drying properties, control of the oxidation state of catechol, among other features. We also summarized recent developments in designing advanced biomimetic materials including coacervate-forming adhesives, mechanically improved nano- and micro-composite adhesive hydrogels, as well as smart and self-healing materials. Finally, we review the applications of catechol-functionalized materials for the use as biomedical adhesives, therapeutic applications, and antifouling coatings

    Born to Run

    No full text
    https://digitalcommons.library.umaine.edu/mmb-vp-copyright/5455/thumbnail.jp

    Forest biomass diversion in the Sierra Nevada: Energy, economics and emissions

    No full text
    As an alternative to open pile burning, use of forest wastes from fuel hazard reduction projects at Blodgett Forest Research Station for electricity production was shown to produce energy and emission benefits: energy (diesel fuel) expended for processing and transport was 2.5% of the biomass fuel (energy equivalent); based on measurements from a large pile burn, air emissions reductions were 98%-99% for PM2.5, CO (carbon monoxide), NMOC (nonmethane organic compounds), CH4 (methane) and BC (black carbon), and 20% for NOx and CO2-equivalent greenhouse gases. Due to transport challenges and delays, delivered cost was 70perbonedryton(BDT)−comprisedofcollectionandprocessing(70 per bone dry ton (BDT) - comprised of collection and processing (34/BDT) and transport (36/BDT)for79milesoneway−whichexceededthebiomassplantgatepriceof36/BDT) for 79 miles one way - which exceeded the biomass plant gate price of 45/BDT. Under typical conditions, the break-even haul distance would be approximately 30 miles one way, with a collection and processing cost of 30/BDTandatransportcostof30/BDT and a transport cost of 16/BDT. Revenue generated from monetization of the reductions in air emissions has the potential to make forest fuel reduction projects more economically viable
    corecore