519 research outputs found

    Unified Topological Inference for Brain Networks in Temporal Lobe Epilepsy Using the Wasserstein Distance

    Full text link
    Persistent homology can extract hidden topological signals present in brain networks. Persistent homology summarizes the changes of topological structures over multiple different scales called filtrations. Doing so detect hidden topological signals that persist over multiple scales. However, a key obstacle of applying persistent homology to brain network studies has always been the lack of coherent statistical inference framework. To address this problem, we present a unified topological inference framework based on the Wasserstein distance. Our approach has no explicit models and distributional assumptions. The inference is performed in a completely data driven fashion. The method is applied to the resting-state functional magnetic resonance images (rs-fMRI) of the temporal lobe epilepsy patients collected at two different sites: University of Wisconsin-Madison and the Medical College of Wisconsin. However, the topological method is robust to variations due to sex and acquisition, and thus there is no need to account for sex and site as categorical nuisance covariates. We are able to localize brain regions that contribute the most to topological differences. We made MATLAB package available at https://github.com/laplcebeltrami/dynamicTDA that was used to perform all the analysis in this study

    Cross-sectional associations of CSF tau levels with Rey's AVLT: A recency ratio study

    Get PDF
    OBJECTIVE: The preeminent in vivo cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) are amyloid β 1-42 (Aβ42), phosphorylated Tau (p-tau), and total Tau (t-tau). The goal of this study was to examine how well traditional (total and delayed recall) and process-based (recency ratio [Rr]) measures derived from Rey's Auditory Verbal Learning test (AVLT) were associated with these biomarkers. METHOD: Data from 235 participants (Mage = 65.5, SD = 6.9), who ranged from cognitively unimpaired to mild cognitive impairment, and for whom CSF values were available, were extracted from the Wisconsin Registry for Alzheimer's Prevention. Bayesian regression analyses were carried out using CSF scores as outcomes, AVLT scores as predictors, and controlling for demographic data and diagnosis. RESULTS: We found moderate evidence that Rr was associated with both CSF p-tau (Bayesian factor [BFM] = 5.55) and t-tau (BFM = 7.28), above and beyond the control variables, while it did not correlate with CSF Aβ42 levels. In contrast, total and delayed recall scores were not linked with any of the AD biomarkers, in separate analyses. When comparing all memory predictors in a single regression, Rr remained the strongest predictor of CSF t-tau levels (BFM = 3.57). CONCLUSIONS: Our findings suggest that Rr may be a better cognitive measure than commonly used AVLT scores to assess CSF levels of p-tau and t-tau in nondemented individuals. (PsycInfo Database Record (c) 2022 APA, all rights reserved)

    Quantum Electronics

    Get PDF
    Contains reports on eight research projects divided into three sections.National Science Foundation (Grant PHY79-09739)Joint Services Electronics Program (Contract DAAG29-78-C-0020)U.S. Air Force Geophysics Laboratory (AFSC) (Contract F19628-79-C-0082)National Science Foundation (Grant ENG79-09980

    Quantum Electronics

    Get PDF
    Contains thirteen research projects split into three sections.U.S. Air Force - Rome Air Development Center (Contract F19628-80-C-0077)National Science Foundation (Grant PHY79-09739)Joint Services Electronics Program (Contract DAAG29-78-C-0020)Joint Services Electronics Program (Contract DAAG29-80-C-0104)U.S. Air Force Geophysics Laboratory (AFSC) (Contract F19628-79-C-0082)National Science Foundation (Grant ECS79-19475)National Science Foundation (Grant DAR80-08752)National Science Foundation (Grant ENG79-09980

    Salience-based selection: attentional capture by distractors less salient than the target

    Get PDF
    Current accounts of attentional capture predict the most salient stimulus to be invariably selected first. However, existing salience and visual search models assume noise in the map computation or selection process. Consequently, they predict the first selection to be stochastically dependent on salience, implying that attention could even be captured first by the second most salient (instead of the most salient) stimulus in the field. Yet, capture by less salient distractors has not been reported and salience-based selection accounts claim that the distractor has to be more salient in order to capture attention. We tested this prediction using an empirical and modeling approach of the visual search distractor paradigm. For the empirical part, we manipulated salience of target and distractor parametrically and measured reaction time interference when a distractor was present compared to absent. Reaction time interference was strongly correlated with distractor salience relative to the target. Moreover, even distractors less salient than the target captured attention, as measured by reaction time interference and oculomotor capture. In the modeling part, we simulated first selection in the distractor paradigm using behavioral measures of salience and considering the time course of selection including noise. We were able to replicate the result pattern we obtained in the empirical part. We conclude that each salience value follows a specific selection time distribution and attentional capture occurs when the selection time distributions of target and distractor overlap. Hence, selection is stochastic in nature and attentional capture occurs with a certain probability depending on relative salience

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Heterostructures for Optical Devices

    Get PDF
    Contains research objectives and reports on eight research projects.Joint Services Electronics Program (Contract DAAL03-86-K-0002)Joint Services Electronics Program (Contract DAALO3-89-C-0001)National Science Foundation (Grant EET 87-03404)Charles Stark Draper Laboratory (Contract DL-H-315251)Xerox Corporation FellowshipMIT Fund

    Heterostructures for High Performance Devices

    Get PDF
    Contains an introduction and reports on ten research projects.Charles S. Draper Laboratory, Contract DL-H-315251Joint Services Electronics Program, Contract DAAL03-89-C-0001National Science Foundation Grant, Grant EET 87-03404MIT FundsInternational Business Machines CorporationNational Science Foundation Grant ECS 84-1317

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO
    corecore