647 research outputs found

    Fast, High-Precision Readout Circuit for Detector Arrays

    Get PDF
    The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 11-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges

    On religion and cultural policy: notes on the Roman Catholic Church

    Get PDF
    This paper argues that religious institutions have largely been neglected within the study of cultural policy. This is attributed to the inherently secular tendency of most modern social sciences. Despite the predominance of the ‘secularisation paradigm’, the paper notes that religion continues to promote powerful attachments and denunciations. Arguments between the ‘new atheists’, in particular, Richard Dawkins, and their opponents are discussed, as is Habermas’s conciliatory encounter with Joseph Ratzinger (later Pope Benedict XVI). The paper then moves to a consideration of the Roman Catholic Church as an agent of cultural policy, whose overriding aim is the promotion of ‘Christian consciousness’. Discussion focuses on the contested meanings of this, with reference to (1) the deliberations of Vatican II and (2) the exercise of theological and cultural authority by the Pope and the Congregation for the Doctrine of the Faith (CDF). It is argued that these doctrinal disputes intersect with secular notions of social and cultural policy and warrant attention outside the specialist realm of theological discourse

    Pathogenicity and immunogenicity of attenuated, nef-deleted HIV-1 strains in vivo

    Get PDF
    In efforts to develop an effective vaccine, sterilizing immunity to primate lentiviruses has only been achieved by the use of live attenuated viruses carrying major deletions in nef and other accessory genes. Although live attenuated HIV vaccines are unlikely to be developed due to a myriad of safety concerns, opportunities exist to better understand the correlates of immune protection against HIV infection by studying rare cohorts of long-term survivors infected with attenuated, nef-deleted HIV strains such as the Sydney blood bank cohort (SBBC). Here, we review studies of viral evolution, pathogenicity, and immune responses to HIV infection in SBBC members. The studies show that potent, broadly neutralizing anti-HIV antibodies and robust CD8+ T-cell responses to HIV infection were not necessary for long-term control of HIV infection in a subset of SBBC members, and were not sufficient to prevent HIV sequence evolution, augmentation of pathogenicity and eventual progression of HIV infection in another subset. However, a persistent T-helper proliferative response to HIV p24 antigen was associated with long-term control of infection. Together, these results underscore the importance of the host in the eventual outcome of infection. Thus, whilst generating an effective antibody and CD8+ T-cell response are an essential component of vaccines aimed at preventing primary HIV infection, T-helper responses may be important in the generation of an effective therapeutic vaccine aimed at blunting chronic HIV infection

    Identification of platform-independent gene expression markers of cisplatin nephrotoxicity.

    Get PDF
    Within the International Life Sciences Institute Committee on Genomics, a working group was formed to focus on the application of microarray technology to preclinical assessments of drug-induced nephrotoxicity. As part of this effort, Sprague-Dawley rats were treated with the nephrotoxicant cisplatin at doses of 0.3-5 mg/kg over a 4- to 144-hr time course. RNA prepared from these animals was run on a variety of microarray formats at multiple sites. A set of 93 differentially expressed genes associated with cisplatin-induced renal injury was identified on the National Institute of Environmental Health Sciences (NIEHS) custom cDNA microarray platform using quadruplicate measurements of pooled animal RNA. The reproducibility of this profile of statistically significant gene changes on other platforms, in pooled and individual animal replicate samples, and in an independent study was investigated. A good correlation in response between platforms was found among the 48 genes in the NIEHS data set that could be matched to probes on the Affymetrix RGU34A array by UniGene identifier or sequence alignment. Similar results were obtained with genes that could be linked between the NIEHS and Incyte or PHASE-1 arrays. The degree of renal damage induced by cisplatin in individual animals was commensurate with the number of differentially expressed genes in this data set. These results suggest that gene profiles linked to specific types of tissue injury or mechanisms of toxicity and identified in well-performed replicated microarray experiments may be extrapolatable across platform technologies, laboratories, and in-life studies

    The FaceBase Consortium: A comprehensive program to facilitate craniofacial research

    Get PDF
    The FaceBase Consortium consists of ten interlinked research and technology projects whose goal is to generate craniofacial research data and technology for use by the research community through a central data management and integrated bioinformatics hub. Funded by the National Institute of Dental and Craniofacial Research (NIDCR) and currently focused on studying the development of the middle region of the face, the Consortium will produce comprehensive datasets of global gene expression patterns, regulatory elements and sequencing; will generate anatomical and molecular atlases; will provide human normative facial data and other phenotypes; conduct follow up studies of a completed genome-wide association study; generate independent data on the genetics of craniofacial development, build repositories of animal models and of human samples and data for community access and analysis; and will develop software tools and animal models for analyzing and functionally testing and integrating these data. The FaceBase website (http://www.facebase.org) will serve as a web home for these efforts, providing interactive tools for exploring these datasets, together with discussion forums and other services to support and foster collaboration within the craniofacial research community

    Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colon cancer arises from the accumulation of multiple genetic and epigenetic alterations to normal colonic tissue. microRNAs (miRNAs) are small, non-coding regulatory RNAs that post-transcriptionally regulate gene expression. Differential miRNA expression in cancer versus normal tissue is a common event and may be pivotal for tumor onset and progression.</p> <p>Methods</p> <p>To identify miRNAs that are differentially expressed in tumors and tumor subtypes, we carried out highly sensitive expression profiling of 735 miRNAs on samples obtained from a statistically powerful set of tumors (n = 80) and normal colon tissue (n = 28) and validated a subset of this data by qRT-PCR.</p> <p>Results</p> <p>Tumor specimens showed highly significant and large fold change differential expression of the levels of 39 miRNAs including miR-135b, miR-96, miR-182, miR-183, miR-1, and miR-133a, relative to normal colon tissue. Significant differences were also seen in 6 miRNAs including miR-31 and miR-592, in the direct comparison of tumors that were deficient or proficient for mismatch repair. Examination of the genomic regions containing differentially expressed miRNAs revealed that they were also differentially methylated in colon cancer at a far greater rate than would be expected by chance. A network of interactions between these miRNAs and genes associated with colon cancer provided evidence for the role of these miRNAs as oncogenes by attenuation of tumor suppressor genes.</p> <p>Conclusion</p> <p>Colon tumors show differential expression of miRNAs depending on mismatch repair status. miRNA expression in colon tumors has an epigenetic component and altered expression that may reflect a reversion to regulatory programs characteristic of undifferentiated proliferative developmental states.</p

    miRNA Expression in Colon Polyps Provides Evidence for a Multihit Model of Colon Cancer

    Get PDF
    Changes in miRNA expression are a common feature in colon cancer. Those changes occurring in the transition from normal to adenoma and from adenoma to carcinoma, however, have not been well defined. Additionally, miRNA changes among tumor subgroups of colon cancer have also not been adequately evaluated. In this study, we examined the global miRNA expression in 315 samples that included 52 normal colonic mucosa, 41 tubulovillous adenomas, 158 adenocarcinomas with proficient DNA mismatch repair (pMMR) selected for stage and age of onset, and 64 adenocarcinomas with defective DNA mismatch repair (dMMR) selected for sporadic (n = 53) and inherited colon cancer (n = 11). Sporadic dMMR tumors all had MLH1 inactivation due to promoter hypermethylation. Unsupervised PCA and cluster analysis demonstrated that normal colon tissue, adenomas, pMMR carcinomas and dMMR carcinomas were all clearly discernable. The majority of miRNAs that were differentially expressed between normal and polyp were also differentially expressed with a similar magnitude in the comparison of normal to both the pMMR and dMMR tumor groups, suggesting a stepwise progression for transformation from normal colon to carcinoma. Among the miRNAs demonstrating the largest fold up- or down-regulated changes (≥4), four novel (miR-31, miR-1, miR-9 and miR-99a) and two previously reported (miR-137 and miR-135b) miRNAs were identified in the normal/adenoma comparison. All but one of these (miR-99a) demonstrated similar expression differences in the two normal/carcinoma comparisons, suggesting that these early tumor changes are important in both the pMMR- and dMMR-derived cancers. The comparison between pMMR and dMMR tumors identified four miRNAs (miR-31, miR-552, miR-592 and miR-224) with statistically significant expression differences (≥2-fold change)
    corecore