1,849 research outputs found

    A comparison of standard and high dose adenosine protocols in routine vasodilator stress cardiovascular magnetic resonance: dosage affects hyperaemic myocardial blood flow in patients with severe left ventricular systolic impairment

    Get PDF
    Background: Adenosine stress perfusion cardiovascular magnetic resonance (CMR) is commonly used in the assessment of patients with suspected ischaemia. Accepted protocols recommend administration of adenosine at a dose of 140 ”g/kg/min increased up to 210 ”g/kg/min if required. Conventionally, adequate stress has been assessed using change in heart rate, however, recent studies have suggested that these peripheral measurements may not reflect hyperaemia and can be blunted, in particular, in patients with heart failure. This study looked to compare stress myocardial blood flow (MBF) and haemodynamic response with different dosing regimens of adenosine during stress perfusion CMR in patients and healthy controls. Methods: 20 healthy adult subjects were recruited as controls to compare 3 adenosine perfusion protocols: standard dose (140 ”g/kg/min for 4 min), high dose (210 ”g/kg/min for 4 min) and long dose (140 ”g/kg/min for 8 min). 60 patients with either known or suspected coronary artery disease (CAD) or with heart failure and different degrees of left ventricular (LV) dysfunction underwent adenosine stress with standard and high dose adenosine within the same scan. All studies were carried out on a 3 T CMR scanner. Quantitative global myocardial perfusion and haemodynamic response were compared between doses. Results: In healthy controls, no significant difference was seen in stress MBF between the 3 protocols. In patients with known or suspected CAD, and those with heart failure and mild systolic impairment (LV ejection fraction (LVEF) ≄ 40%) no significant difference was seen in stress MBF between standard and high dose adenosine. In those with LVEF < 40%, there was a significantly higher stress MBF following high dose adenosine compared to standard dose (1.33 ± 0.46 vs 1.10 ± 0.47 ml/g/min, p = 0.004). Non-responders to standard dose adenosine (defined by an increase in heart rate (HR) < 10 bpm) had a significantly higher stress HR following high dose (75 ± 12 vs 70 ± 14 bpm, p = 0.034), but showed no significant difference in stress MBF. Conclusions: Increasing adenosine dose from 140 to 210 ”g/kg/min leads to increased stress MBF in patients with significantly impaired LV systolic function. Adenosine dose in clinical perfusion assessment may need to be increased in these patients

    Exercise cardiovascular magnetic resonance: feasibility and development of biventricular function and great vessel flow assessment, during continuous exercise accelerated by Compressed SENSE: preliminary results in healthy volunteers

    Get PDF
    Purpose Exercise cardiovascular magnetic resonance (Ex-CMR) typically requires complex post-processing or transient exercise cessation, decreasing clinical utility. We aimed to demonstrate the feasibility of assessing biventricular volumes and great vessel flow during continuous in-scanner Ex-CMR, using vendor provided Compressed SENSE (C-SENSE) sequences and commercial analysis software (Cvi42). Methods 12 healthy volunteers (8-male, age: 35 ± 9 years) underwent continuous supine cycle ergometer (Lode-BV) Ex-CMR (1.5T Philips, Ingenia). Free-breathing, respiratory navigated C-SENSE short-axis cines and aortic/pulmonary phase contrast magnetic resonance (PCMR) sequences were validated against clinical sequences at rest and used during low and moderate intensity Ex-CMR. Optimal PCMR C-SENSE acceleration, C-SENSE-3 (CS3) vs C-SENSE-6 (CS6), was further investigated by image quality scoring. Intra-and inter-operator reproducibility of biventricular and flow indices was performed. Results All CS3 PCMR image quality scores were superior (p  0.93). During Ex-CMR, biventricular end-diastolic volumes (EDV) remained unchanged, except right-ventricular EDV decreasing at moderate exercise. Biventricular ejection-fractions increased at each stage. Exercise biventricular cine and PCMR stroke volumes correlated very strongly (r ≄ 0.9), demonstrating internal validity. Intra-observer reproducibility was excellent, co-efficient of variance (COV) < 10%. Inter-observer reproducibility was excellent, except for resting right-ventricular, and exercise bi-ventricular end-systolic volumes which were good (COV 10–20%). Conclusion Biventricular function, aortic and pulmonary flow assessment during continuous Ex-CMR using CS3 sequences is feasible, reproducible and analysable using commercially available software

    Insight Into Myocardial Microstructure of Athletes and Hypertrophic Cardiomyopathy Patients Using Diffusion Tensor Imaging

    Get PDF
    Background Hypertrophic cardiomyopathy (HCM) remains the commonest cause of sudden cardiac death among young athletes. Differentiating between physiologically adaptive left ventricular (LV) hypertrophy observed in athletes' hearts and pathological HCM remains challenging. By quantifying the diffusion of water molecules, diffusion tensor imaging (DTI) MRI allows voxelwise characterization of myocardial microstructure. Purpose To explore microstructural differences between healthy volunteers, athletes, and HCM patients using DTI. Study Type Prospective cohort. Population Twenty healthy volunteers, 20 athletes, and 20 HCM patients. Field Strength/Sequence 3T/DTI spin echo. Assessment In‐house MatLab software was used to derive mean diffusivity (MD) and fractional anisotropy (FA) as markers of amplitude and anisotropy of the diffusion of water molecules, and secondary eigenvector angles (E2A)—reflecting the orientations of laminar sheetlets. Statistical Tests Independent samples t‐tests were used to detect statistical significance between any two cohorts. Analysis of variance was utilized for detecting the statistical difference between the three cohorts. Statistical tests were two‐tailed. A result was considered statistically significant at P ≀ 0.05. Results DTI markers were significantly different between HCM, athletes, and volunteers. HCM patients had significantly higher global MD and E2A, and significantly lower FA than athletes and volunteers. (MDHCM = 1.52 ± 0.06 × 10−3 mm2/s, MDAthletes = 1.49 ± 0.03 × 10−3 mm2/s, MDvolunteers = 1.47 ± 0.02 × 10−3 mm2/s, P < 0.05; E2AHCM = 58.8 ± 4°, E2Aathletes = 47 ± 5°, E2Avolunteers = 38.5 ± 7°, P < 0.05; FAHCM = 0.30 ± 0.02, FAAthletes = 0.35 ± 0.02, FAvolunteers = 0.36 ± 0.03, P < 0.05). HCM patients had significantly higher E2A in their thickest segments compared to the remote (E2Athickest = 66.8 ± 7, E2Aremote = 51.2 ± 9, P < 0.05). Data Conclusion DTI depicts an increase in amplitude and isotropy of diffusion in the myocardium of HCM compared to athletes and volunteers as reflected by increased MD and decreased FA values. While significantly higher E2A values in HCM and athletes reflect steeper configurations of the myocardial sheetlets than in volunteers, HCM patients demonstrated an eccentric rise in E2A in their thickest segments, while athletes demonstrated a concentric rise. Further studies are required to determine the diagnostic capabilities of DTI. Evidence Level 1 Technical Efficacy Stage

    Epigenetic Changes of Serotonin Transporter in the Patients with Alcohol Dependence: Methylation of an Serotonin Transporter Promoter CpG Island

    Get PDF
    ObjectiveaaPsychiatric disorders such as depression, anxiety and alcohol dependence are associated with serotonin metabolism. We assessed the methylation level of the serotonin transporter (5-HTT) promoter region in control and alcohol dependent patients. MethodsaaTwenty seven male patients who met the Diagnostic and Statistical Manual of Mental Disorder IV (DSM-IV) criteria for alcohol dependence were compared with fifteen controls. Polymerase chain reaction (PCR) assays of bisulfate-modified DNA were designed to amplify a part of the CpG island in the 5HTT gene. Pyrosequencing was performed and the methylation level at seven CpG island sites was measured. ResultsaaWe found no differences in the methylation patterns of the serotonin transporter linked promoter region (5-HTTLPR) between alcohol-dependent and control subjects. ConclusionaaOur negative finding may be because 5-HTT epigenetic variation may not affect the expression for 5-HTT or there may be other methylation site critical for its expression. To find out more conclusive result, repeating the study in more methylation sites with a larger number of samples in a well-controlled setting is needed. Psychiatry Investig 2011;8:130-13

    A comparison of standard and high dose adenosine protocols in routine vasodilator stress cardiovascular magnetic resonance: dosage affects hyperaemic myocardial blood flow in patients with severe left ventricular systolic impairment

    Get PDF
    Background Adenosine stress perfusion cardiovascular magnetic resonance (CMR) is commonly used in the assessment of patients with suspected ischaemia. Accepted protocols recommend administration of adenosine at a dose of 140 ”g/kg/min increased up to 210 ”g/kg/min if required. Conventionally, adequate stress has been assessed using change in heart rate, however, recent studies have suggested that these peripheral measurements may not reflect hyperaemia and can be blunted, in particular, in patients with heart failure. This study looked to compare stress myocardial blood flow (MBF) and haemodynamic response with different dosing regimens of adenosine during stress perfusion CMR in patients and healthy controls. Methods 20 healthy adult subjects were recruited as controls to compare 3 adenosine perfusion protocols: standard dose (140 ”g/kg/min for 4 min), high dose (210 ”g/kg/min for 4 min) and long dose (140 ”g/kg/min for 8 min). 60 patients with either known or suspected coronary artery disease (CAD) or with heart failure and different degrees of left ventricular (LV) dysfunction underwent adenosine stress with standard and high dose adenosine within the same scan. All studies were carried out on a 3 T CMR scanner. Quantitative global myocardial perfusion and haemodynamic response were compared between doses. Results In healthy controls, no significant difference was seen in stress MBF between the 3 protocols. In patients with known or suspected CAD, and those with heart failure and mild systolic impairment (LV ejection fraction (LVEF) ≄ 40%) no significant difference was seen in stress MBF between standard and high dose adenosine. In those with LVEF < 40%, there was a significantly higher stress MBF following high dose adenosine compared to standard dose (1.33 ± 0.46 vs 1.10 ± 0.47 ml/g/min, p = 0.004). Non-responders to standard dose adenosine (defined by an increase in heart rate (HR) < 10 bpm) had a significantly higher stress HR following high dose (75 ± 12 vs 70 ± 14 bpm, p = 0.034), but showed no significant difference in stress MBF. Conclusions Increasing adenosine dose from 140 to 210 ”g/kg/min leads to increased stress MBF in patients with significantly impaired LV systolic function. Adenosine dose in clinical perfusion assessment may need to be increased in these patients

    Quantitative myocardial perfusion in coronary artery disease: A perfusion mapping study

    Get PDF
    BACKGROUND: Cardiac MR stress perfusion remains a qualitative technique in clinical practice due to technical and postprocessing challenges. However, automated inline perfusion mapping now permits myocardial blood flow (MBF, ml/g/min) quantification on-the-fly without user input. PURPOSE: To investigate the diagnostic performance of this novel technique in detecting occlusive coronary artery disease (CAD) in patients scheduled to undergo coronary angiography. STUDY TYPE: Prospective, observational. SUBJECTS: Fifty patients with suspected CAD and 24 healthy volunteers. FIELD STRENGTH: 1.5T. SEQUENCE: "Dual" sequence multislice 2D saturation recovery. ASSESSMENT: All patients underwent cardiac MR with perfusion mapping and invasive coronary angiography; the healthy volunteers had MR with perfusion mapping alone. STATISTICAL TESTS: Comparison between numerical variables was performed using an independent t-test. Receiver operator characteristic (ROC) curves were generated for transmyocardial, endocardial stress MBF, and myocardial perfusion reserve (MPR, the stress:rest MBF ratio) to diagnose severe (>70%) stenoses as measured by 3D quantitative coronary angiography (QCA). ROC curves were compared by the method of DeLong et al. RESULTS: Compared with volunteers, patients had lower stress MBF and MPR even in vessels with 70%), MBF and MPR decreased. To diagnose occlusive (>70%) CAD, endocardial and transmyocardial stress MBF were superior to MPR (area under the curve 0.92 [95% CI 0.86-0.97] vs. 0.90 [95% CI 0.84-0.95] and 0.80 [95% CI 0.72-0.87], respectively). An endocardial threshold of 1.31 ml/g/min provided a per-coronary artery sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 90%, 82%, 50%, and 98%, with a per-patient diagnostic performance of 100%, 66%, 57%, and 100%, respectively. DATA CONCLUSION: Perfusion mapping can diagnose occlusive CAD with high accuracy and, in particular, high sensitivity and NPV make it a potential "rule-out" test. LEVEL OF EVIDENCE: 1 Technical Efficacy Stage: 2

    Measurement of the Branching Fraction for B- --> D0 K*-

    Get PDF
    We present a measurement of the branching fraction for the decay B- --> D0 K*- using a sample of approximately 86 million BBbar pairs collected by the BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the K*- through its decay to K0S pi-. We measure the branching fraction to be B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}.Comment: 7 pages, 1 postscript figure, submitted to Phys. Rev. D (Rapid Communications

    Measurement of Branching Fraction and Dalitz Distribution for B0->D(*)+/- K0 pi-/+ Decays

    Get PDF
    We present measurements of the branching fractions for the three-body decays B0 -> D(*)-/+ K0 pi^+/-andtheirresonantsubmodes and their resonant submodes B0 -> D(*)-/+ K*+/- using a sample of approximately 88 million BBbar pairs collected by the BABAR detector at the PEP-II asymmetric energy storage ring. We measure: B(B0->D-/+ K0 pi+/-)=(4.9 +/- 0.7(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K0 pi+/-)=(3.0 +/- 0.7(stat) +/- 0.3 (syst)) 10^{-4} B(B0->D-/+ K*+/-)=(4.6 +/- 0.6(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K*+/-)=(3.2 +/- 0.6(stat) +/- 0.3 (syst)) 10^{-4} From these measurements we determine the fractions of resonant events to be : f(B0-> D-/+ K*+/-) = 0.63 +/- 0.08(stat) +/- 0.04(syst) f(B0-> D*-/+ K*+/-) = 0.72 +/- 0.14(stat) +/- 0.05(syst)Comment: 7 pages, 3 figures submitted to Phys. Rev. Let

    Evidence for the Rare Decay B -> K*ll and Measurement of the B -> Kll Branching Fraction

    Get PDF
    We present evidence for the flavor-changing neutral current decay B→K∗ℓ+ℓ−B\to K^*\ell^+\ell^- and a measurement of the branching fraction for the related process B→Kℓ+ℓ−B\to K\ell^+\ell^-, where ℓ+ℓ−\ell^+\ell^- is either an e+e−e^+e^- or ÎŒ+Ό−\mu^+\mu^- pair. These decays are highly suppressed in the Standard Model, and they are sensitive to contributions from new particles in the intermediate state. The data sample comprises 123×106123\times 10^6 ΄(4S)→BBˉ\Upsilon(4S)\to B\bar{B} decays collected with the Babar detector at the PEP-II e+e−e^+e^- storage ring. Averaging over K(∗)K^{(*)} isospin and lepton flavor, we obtain the branching fractions B(B→Kℓ+ℓ−)=(0.65−0.13+0.14±0.04)×10−6{\mathcal B}(B\to K\ell^+\ell^-)=(0.65^{+0.14}_{-0.13}\pm 0.04)\times 10^{-6} and B(B→K∗ℓ+ℓ−)=(0.88−0.29+0.33±0.10)×10−6{\mathcal B}(B\to K^*\ell^+\ell^-)=(0.88^{+0.33}_{-0.29}\pm 0.10)\times 10^{-6}, where the uncertainties are statistical and systematic, respectively. The significance of the B→Kℓ+ℓ−B\to K\ell^+\ell^- signal is over 8σ8\sigma, while for B→K∗ℓ+ℓ−B\to K^*\ell^+\ell^- it is 3.3σ3.3\sigma.Comment: 7 pages, 2 postscript figues, submitted to Phys. Rev. Let

    Study of e+e- --> pi+ pi- pi0 process using initial state radiation with BABAR

    Get PDF
    The process e+e- --> pi+ pi- pi0 gamma has been studied at a center-of-mass energy near the Y(4S) resonance using a 89.3 fb-1 data sample collected with the BaBar detector at the PEP-II collider. From the measured 3pi mass spectrum we have obtained the products of branching fractions for the omega and phi mesons, B(omega --> e+e-)B(omega --> 3pi)=(6.70 +/- 0.06 +/- 0.27)10-5 and B(phi --> e+e-)B(phi --> 3pi)=(4.30 +/- 0.08 +/- 0.21)10-5, and evaluated the e+e- --> pi+ pi- pi0 cross section for the e+e- center-of-mass energy range 1.05 to 3.00 GeV. About 900 e+e- --> J/psi gamma --> pi+ pi- pi0 gamma events have been selected and the branching fraction B(J/psi --> pi+ pi- pi0)=(2.18 +/- 0.19)% has been measured.Comment: 21 pages, 37 postscript figues, submitted to Phys. Rev.
    • 

    corecore