16 research outputs found

    Mixed-cropping between field pea varieties alters root bacterial and fungal communities

    Get PDF
    Modern agricultural practices have vastly increased crop production but negatively affected soil health. As such, there is a call to develop sustainable, ecologically-viable approaches to food production. Mixed-cropping of plant varieties can increase yields, although impacts on plant-associated microbial communities are unclear, despite their critical role in plant health and broader ecosystem function. We investigated how mixed-cropping between two field pea (Pisum sativum L.) varieties (Winfreda and Ambassador) influenced root-associated microbial communities and yield. The two varieties supported significantly different fungal and bacterial communities when grown as mono-crops. Mixed-cropping caused changes in microbial communities but with differences between varieties. Root bacterial communities of Winfreda remained stable in response to mixed-cropping, whereas those of Ambassador became more similar to Winfreda. Conversely, root fungal communities of Ambassador remained stable under mixed-cropping, and those of Winfreda shifted towards the composition of Ambassador. Microbial co-occurrence networks of both varieties were stronger and larger under mixed-cropping, which may improve stability and resilience in agricultural soils. Both varieties produced slightly higher yields under mixed-cropping, although overall Ambassador plants produced higher yields than Winfreda plants. Our results suggest that variety diversification may increase yield and promote microbial interactions

    Genetic tools in the management of invasive mammals : recent trends and future perspectives

    Get PDF
    1. Invasive non-native species are now considered to be one of the greatest threats to biodiversity worldwide. Therefore, efficient and cost-effective management of species invasions requires robust knowledge of their demography, ecology and impacts, and genetic-based techniques are becoming more widely adopted in acquiring such knowledge. 2. We focus on the use of genetic tools in the applied management of mammalian invasions globally, as well as on their inherent advantages and disadvantages. We cover tools that are used in: (1) detecting and monitoring mammalian invaders; (2) identifying origins and invasive pathways; (3) assessing and quantifying the negative impacts of invaders; and 4) population management and potential eradication of invasive mammals. 3. We highlight changes in sequencing technologies, including how the use of techniques such as Sanger sequencing and microsatellite genotyping, for monitoring and tracing invasive pathways respectively, are now giving way to the use of high-throughput sequencing methods. These include the emergence of environmental DNA (eDNA) metabarcoding for the early detection of invasive mammals, and single nucleotide polymorphisms or whole genomes to trace the sources of invasive populations. We are now moving towards trials of genome-editing techniques and gene drives to control or eradicate invasive rodents. 4. Genetic tools can provide vital information that may not be accessible with non-genetic methods, for the implementation of conservation policies (e.g. early detection using systematic eDNA surveillance, the identification of novel pathogens). However, the lack of clear communication of novel genetic methods and results (including transparency and reproducibility) to relevant stakeholders can be prohibitive in translating these findings to appropriate management actions. Geneticists should engage early with stakeholders to co-design experiments in relation to management goals for invasive mammals

    Resource competition drives an invasion-replacement event among shrew species on an island

    Get PDF
    Invasive mammals are responsible for the majority of native species extinctions on islands. While most of these extinction events will be due to novel interactions between species (e.g. exotic predators and naive prey), it is more unusual to find incidences where a newly invasive species causes the decline/extinction of a native species on an island when they normally coexist elsewhere in their overlapping mainland ranges. We investigated if resource competition between two insectivorous small mammals was playing a significant role in the rapid replacement of the native pygmy shrew Sorex minutus in the presence of the recently invading greater white-toothed shrew Crocidura russula on the island of Ireland. We used DNA metabarcoding of gut contents from >300 individuals of both species to determine each species' diet and measured the body size (weight and length) during different stages of the invasion in Ireland (before, during and after the species come into contact with one another) and on a French island where both species have long coexisted (acting as a natural ‘control’ site). Dietary composition, niche width and overlap and body size were compared in these different stages. The body size of the invasive C. russula and composition of its diet changes between when it first invades an area and after it becomes established. During the initial stages of the invasion, individual shrews are larger and consume larger sized invertebrate prey species. During later stages of the invasion, C. russula switches to consuming smaller prey taxa that are more essential for the native species. As a result, the level of interspecific dietary overlap increases from between 11% and 14% when they first come into contact with each other to between 39% and 46% after the invasion. Here we show that an invasive species can quickly alter its dietary niche in a new environment, ultimately causing the replacement of a native species. In addition, the invasive shrew could also be potentially exhausting local resources of larger invertebrate species. These subsequent changes in terrestrial invertebrate communities could have severe impacts further downstream on ecosystem functioning and services

    Environmental DNA metabarcoding as an effective and rapid tool for fish monitoring in canals

    Get PDF
    We focus on a case study along an English canal comparing environmental DNA (eDNA) metabarcoding with two types of electrofishing techniques (wade‐and‐reach and boom‐boat). In addition to corroborating data obtained by electrofishing, eDNA provided a wider snapshot of fish assemblages. Given the semi‐lotic nature of canals, we encourage the use of eDNA as a fast and cost‐effective tool to detect and monitor whole fish communities

    Resource competition drives an invasion‐replacement event among shrew species on an island

    Get PDF
    Invasive mammals are responsible for the majority of native species extinctions on islands. While most of these extinction events will be due to novel interactions between species (e.g. exotic predators and naive prey), it is more unusual to find incidences where a newly invasive species causes the decline/extinction of a native species on an island when they normally coexist elsewhere in their overlapping mainland ranges. We investigated if resource competition between two insectivorous small mammals was playing a significant role in the rapid replacement of the native pygmy shrew Sorex minutus in the presence of the recently invading greater white‐toothed shrew Crocidura russula on the island of Ireland. We used DNA metabarcoding of gut contents from >300 individuals of both species to determine each species' diet and measured the body size (weight and length) during different stages of the invasion in Ireland (before, during and after the species come into contact with one another) and on a French island where both species have long coexisted (acting as a natural ‘control’ site). Dietary composition, niche width and overlap and body size were compared in these different stages. The body size of the invasive C. russula and composition of its diet changes between when it first invades an area and after it becomes established. During the initial stages of the invasion, individual shrews are larger and consume larger sized invertebrate prey species. During later stages of the invasion, C. russula switches to consuming smaller prey taxa that are more essential for the native species. As a result, the level of interspecific dietary overlap increases from between 11% and 14% when they first come into contact with each other to between 39% and 46% after the invasion. Here we show that an invasive species can quickly alter its dietary niche in a new environment, ultimately causing the replacement of a native species. In addition, the invasive shrew could also be potentially exhausting local resources of larger invertebrate species. These subsequent changes in terrestrial invertebrate communities could have severe impacts further downstream on ecosystem functioning and services

    Primer biases in the molecular assessment of diet in multiple insectivorous mammals

    Get PDF
    Our understanding of trophic interactions of small insectivorous mammals has been drastically improved with the advent of DNA metabarcoding. The technique has continued to be optimised over the years, with primer choice repeatedly being a vital factor for dietary inferences. However, the majority of dietary studies examining the effect of primer choice often rely on in silico analyses or comparing between species that occupy an identical niche type. Here, we apply DNA metabarcoding to empirically compare the prey detection capabilities of two widely used primer sets when assessing the diets of a flying (lesser horseshoe bat; Rhinolophus hipposideros) and two ground-dwelling insectivores (greater white-toothed shrew; Crocidura russula and pygmy shrew; Sorex minutus). Although R. hipposideros primarily rely on two prey orders (Lepidoptera and Diptera), the unique taxa detected by each primer shows that a combination of primers may be the best approach to fully describe bat trophic ecology. However, random forest classifier analysis suggests that one highly degenerate primer set detected the majority of both shrews’ diet despite higher levels of host amplification. The wide range of prey consumed by ground-dwelling insectivores can therefore be accurately documented from using a single broad-range primer set, which can decrease cost and labour. The results presented here show that dietary inferences will differ depending on the primer or primer combination used for insectivores occupying different niches (i.e., hunting in the air or ground) and demonstrate the importance of performing empirical pilot studies for novel study systems

    Using and communicating uncertainty for the effective control of invasive non-native species

    Get PDF
    Estimates of quantities needed to plan invasive species control, such as population size, are always uncertain; this is an issue that can become a problem when mishandled in ecological science and its communication. The complexities of incorporating uncertainty into sophisticated decision‐support tools may be a barrier to their use by decision makers, leading to decisions being made without due regard to uncertainty and risking misplaced certainty of predicted outcomes. We summarise ways in which uncertainty has been incorporated into and used to advise decisions on the management of invasive non‐native species and other problem species, and offer a simple conceptual model for accommodating and using uncertainty at the planning stage. We also demonstrate how frequently uncertainty has been misused and miscommunicated in the wildlife management literature. We contend that uncertainty in estimates of natural quantities must be acknowledged, can inform decisions and can be made to derive decisions, and should not be ignored if invasive species policy is to be delivered effectively. Uncertainty must be communicated thoroughly and correctly by scientists if decision makers are to understand its consequences for planning and resourcing control programmes

    Seasonal development of a tidal mixing front drives shifts in community structure and diversity of bacterioplankton

    Get PDF
    Bacterioplankton underpin biogeochemical cycles and an improved understanding of the patterns and drivers of variability in their distribution is needed to determine their wider functioning and importance. Sharp environmental gradients and dispersal barriers associated with ocean fronts are emerging as key determinants of bacterioplankton biodiversity patterns. We examined how the development of the Celtic Sea Front (CF), a tidal mixing front on the Northwest European Shelf affects bacterioplankton communities. We performed 16S-rRNA metabarcoding on 60 seawater samples collected from three depths (surface, 20 m and seafloor), across two research cruises (May and September 2018), encompassing the intra-annual range of the CF intensity. Communities above the thermocline of stratified frontal waters were clearly differentiated and less diverse than those below the thermocline and communities in the well-mixed waters of the Irish Sea. This effect was much more pronounced in September, when the CF was at its peak intensity. The stratified zone likely represents a stressful environment for bacterioplankton due to a combination of high temperatures and low nutrients, which fewer taxa can tolerate. Much of the observed variation was driven by Synechococcus spp. (cyanobacteria), which were more abundant within the stratified zone and are known to thrive in warm oligotrophic waters. Synechococcus spp. are key contributors to global primary productivity and carbon cycling and, as such, variability driven by the CF is likely to influence regional biogeochemical processes. However, further studies are required to explicitly link shifts in community structure to function and quantify their wider importance to pelagic ecosystems

    Fishing for mammals: Landscape-level monitoring of terrestrial and semi-aquatic communities using eDNA from riverine systems

    Get PDF
    Environmental DNA (eDNA) metabarcoding has revolutionized biomonitoring in both marine and freshwater ecosystems. However, for semi-aquatic and terrestrial animals, the application of this technique remains relatively untested. We first assess the efficiency of eDNA metabarcoding in detecting semi-aquatic and terrestrial mammals in natural lotic ecosystems in the UK by comparing sequence data recovered from water and sediment samples to the mammalian communities expected from historical data. Secondly, using occupancy modelling we compared the detection efficiency of eDNA metabarcoding to multiple conventional non-invasive survey methods (latrine surveys and camera trapping). eDNA metabarcoding detected a large proportion of the expected mammalian community within each area. Common species in the areas were detected at the majority of sites. Several key species of conservation concern in the UK were detected by eDNA sampling in areas where authenticated records do not currently exist, but potential false positives were also identified. Water-based eDNA metabarcoding provided comparable results to conventional survey methods in per unit of survey effort for three species (water vole, field vole and red deer) using occupancy models. The comparison between survey ‘effort’ to reach a detection probability of ≄.95 revealed that 3–6 water replicates would be equivalent to 3–5 latrine surveys and 5–30 weeks of single camera deployment, depending on the species. Synthesis and applications. eDNA metabarcoding can be used to generate an initial ‘distribution map’ of mammalian diversity at the landscape level. If conducted during times of peak abundance, carefully chosen sampling points along multiple river courses provide a reliable snapshot of the species that are present in a catchment area. In order to fully capture solitary, rare and invasive species, we would currently recommend the use of eDNA metabarcoding alongside other non-invasive surveying methods (i.e. camera traps) to maximize monitoring efforts. © 2020 British Ecological Societ

    Fungal microbiomes are determined by host phylogeny and exhibit widespread associations with the bacterial microbiome

    Get PDF
    Interactions between hosts and their resident microbial communities are a fundamental component of fitness for both agents. Though recent research has highlighted the importance of interactions between animals and their bacterial communities, comparative evidence for fungi is lacking, especially in natural populations. Using data from 49 species, we present novel evidence of strong covariation between fungal and bacterial communities across the host phylogeny, indicative of recruitment by hosts for specific suites of microbes. Using co-occurrence networks, we demonstrate that fungi form critical components of putative microbial interaction networks, where the strength and frequency of interactions varies with host taxonomy. Host phylogeny drives differences in overall richness of bacterial and fungal communities, but the effect of diet on richness was only evident in mammals and for the bacterial microbiome. Collectively these data indicate fungal microbiomes may play a key role in host fitness and suggest an urgent need to study multiple agents of the animal microbiome to accurately determine the strength and ecological significance of host-microbe interactions. SIGNIFICANCE STATEMENT Microbes perform vital metabolic functions that shape the physiology of their hosts. However, almost all research to date in wild animals has focused exclusively on the bacterial microbiota, to the exclusion of other microbial groups. Although likely to be critical components of the host microbiome, we have limited knowledge of the drivers of fungal composition across host species. Here we show that fungal community composition is determined by host species identity and phylogeny, and that fungi form extensive interaction networks with bacteria in the microbiome of a diverse range of animal species. This highlights the importance of microbial interactions as mediators of microbiome-health relationships in the wild
    corecore