309 research outputs found

    It’s the Combination: Scientific Data Review of the First Corn Silage to Bring Together Fiber and Starch Digestibility

    Full text link
    This information was presented at the 2017 Cornell Nutrition Conference for Feed Manufacturers, organized by the Department of Animal Science In the College of Agriculture and Life Sciences at Cornell University. Softcover copies of the entire conference proceedings may be purchased at http://ansci.cals.cornell.edu/extension-outreach/adult-extension/dairy-management/order-proceedings-resources.A recent study compared a newly developed brown midrib 3 corn silage with floury endosperm to a conventional corn silage and a brown midrib 3 corn silage for high-producing Holstein cows. The combination of greater rumen fiber and starch fermentability of the new hybrid resulted in greater efficiency of solids-corrected milk production and milk nitrogen efficiency compared with the brown midrib and conventional hybrids

    Changing indications and socio-demographic determinants of (adeno)tonsillectomy among children in England--are they linked? A retrospective analysis of hospital data.

    Get PDF
    OBJECTIVE: To assess whether increased awareness and diagnosis of obstructive sleep apnoea syndrome (OSAS) and national guidance on tonsillectomy for recurrent tonsillitis have influenced the socio-demographic profile of children who underwent tonsillectomy over the last decade. METHOD: Retrospective time-trends study of Hospital Episodes Statistics data. We examined the age, sex and deprivation level, alongside OSAS diagnoses, among children aged <16 years who underwent (adeno)tonsillectomy in England between 2001/2 and 2011/12. RESULTS: Among children aged <16 years, there were 29,697 and 27,732 (adeno)tonsillectomies performed in 2001/2 and 2011/12, respectively. The median age at (adeno)tonsillectomy decreased from 7 (IQR: 5-11) to 5 (IQR: 4-9) years over the decade. (Adeno)tonsillectomy rates among children aged 4-15 years decreased by 14% from 350 (95%CI: 346-354) in 2001/2 to 300 (95%CI: 296-303) per 100,000 children in 2011/12. However, (adeno)tonsillectomy rates among children aged <4 years increased by 58% from 135 (95%CI: 131-140) to 213 (95%CI 208-219) per 100,000 children in 2001/2 and 2011/2, respectively. OSAS diagnoses among children aged <4 years who underwent surgery increased from 18% to 39% between these study years and the proportion of children aged <4 years with OSAS from the most deprived areas increased from 5% to 12%, respectively. CONCLUSIONS: (Adeno)tonsillectomy rates declined among children aged 4-15 years, which reflects national guidelines recommending the restriction of the operation to children with more severe recurrent throat infections. However, (adeno)tonsillectomy rates among pre-school children substantially increased over the past decade and one in five children undergoing the operation was aged <4 years in 2011/12.The increase in surgery rates in younger children is likely to have been driven by increased awareness and detection of OSAS, particularly among children from the most deprived areas

    Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis

    Get PDF
    We tested whether inhibiting mechanically responsive articular chondrocyte mitochondria after severe traumatic injury and preventing oxidative damage represent a viable paradigm for posttraumatic osteoarthritis (PTOA) prevention. We used a porcine hock intra-articular fracture (IAF) model well suited to human-like surgical techniques and with excellent anatomic similarities to human ankles. After IAF, amobarbital or N-acetylcysteine (NAC) was injected to inhibit chondrocyte electron transport or downstream oxidative stress, respectively. Effects were confirmed via spectrophotometric enzyme assays or glutathione/glutathione disulfide assays and immunohistochemical measures of oxidative stress. Amobarbital or NAC delivered after IAF provided substantial protection against PTOA at 6 months, including maintenance of proteoglycan content, decreased histological disease scores, and normalized chondrocyte metabolic function. These data support the therapeutic potential of targeting chondrocyte metabolism after injury and suggest a strong role for mitochondria in mediating PTOA

    Polymeric Branched Flocculant Effect on the Flocculation Process of Pulp Suspensions in the Papermaking Industry

    Get PDF
    This paper presents the effect of the structure of cationic polyacrylamides (CPAMs) on flocculation of pulp suspensions and floc properties. A focused beam reflectance measurement (FBRM) probe was used to monitor flocculation, deflocculation, and reflocculation processes in real time. To carry out the study, 1% elemental chlorine free (ECF) eucalyptus kraft pulp containing 20% ground calcium carbonate (GCC) was used. Results show that the effect of the CPAM structure depends on charge density and polymer dose. Floc size does not always decrease with branching degree, whereas floc stability and reflocculation ability increased when highly charged and branched CPAM was used. These findings indicate that the use of highly branched CPAMs with very high molecular weight is very promising as a retention aid method to improve the papermaking process

    Non-classical ProIL-1beta activation during mammary gland infection is pathogen-dependent but caspase-1 independent

    Get PDF
    Infection of the mammary gland with live bacteria elicits a pathogen-specific host inflammatory response. To study these host-pathogen interactions wild type mice, NF-kappaB reporter mice as well as caspase-1 and IL-1beta knockout mice were intramammarily challenged with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The murine mastitis model allowed to compare the kinetics of the induced cytokine protein profiles and their underlying pathways. In vivo and ex vivo imaging showed that E. coli rapidly induced NF-kappaB inflammatory signaling concomitant with high mammary levels of TNF-alpha, IL-1 alpha and MCP-1 as determined by multiplex analysis. In contrast, an equal number of S. aureus bacteria induced a low NF-kappaB activity concomitant with high mammary levels of the classical IL-1beta fragment. These quantitative and qualitative differences in local inflammatory mediators resulted in an earlier neutrophil influx and in a more extensive alveolar damage post-infection with E. coli compared to S. aureus. Western blot analysis revealed that the inactive proIL-1beta precursor was processed into pathogen-specific IL-1beta fragmentation patterns as confirmed with IL-1beta knockout animals. Additionally, caspase-1 knockout animals allowed to investigate whether IL-1beta maturation depended on the conventional inflammasome pathway. The lack of caspase-1 did not prevent extensive proIL-1beta fragmentation by either of S. aureus or E. coli. These non-classical IL-1beta patterns were likely caused by different proteases and suggest a sentinel function of IL-1beta during mammary gland infection. Thus, a key signaling nodule can be defined in the differential host innate immune defense upon E. coli versus S. aureus mammary gland infection, which is independent of caspase-1

    Bacteriophage Lysin Mediates the Binding of Streptococcus mitis to Human Platelets through Interaction with Fibrinogen

    Get PDF
    The binding of bacteria to human platelets is a likely central mechanism in the pathogenesis of infective endocarditis. We have previously found that platelet binding by Streptococcus mitis SF100 is mediated by surface components encoded by a lysogenic bacteriophage, SM1. We now demonstrate that SM1-encoded lysin contributes to platelet binding via its direct interaction with fibrinogen. Far Western blotting of platelets revealed that fibrinogen was the major membrane-associated protein bound by lysin. Analysis of lysin binding with purified fibrinogen in vitro confirmed that these proteins could bind directly, and that this interaction was both saturable and inhibitable. Lysin bound both the Aα and Bβ chains of fibrinogen, but not the γ subunit. Binding of lysin to the Bβ chain was further localized to a region within the fibrinogen D fragment. Disruption of the SF100 lysin gene resulted in an 83±3.1% reduction (mean ± SD) in binding to immobilized fibrinogen by this mutant strain (PS1006). Preincubation of this isogenic mutant with purified lysin restored fibrinogen binding to wild type levels. When tested in a co-infection model of endocarditis, loss of lysin expression resulted in a significant reduction in virulence, as measured by achievable bacterial densities (CFU/g) within vegetations, kidneys, and spleens. These results indicate that bacteriophage-encoded lysin is a multifunctional protein, representing a new class of fibrinogen-binding proteins. Lysin appears to be cell wall-associated through its interaction with choline. Once on the bacterial surface, lysin can bind fibrinogen directly, which appears to be an important interaction for the pathogenesis of endocarditis

    Synthesis of γ-, δ-, and ε-Lactams by Asymmetric Transfer Hydrogenation of N-(tert-Butylsulfinyl)iminoesters

    Get PDF
    Highly enantiomerically enriched γ- and δ-lactams have been prepared by a simple and very efficient procedure that involves the asymmetric transfer hydrogenation of N-(tert-butylsulfinyl)iminoesters followed by desulfinylation of the nitrogen atom and spontaneous cyclization to the desired lactams during the basic workup procedure. Five- and six-membered ring lactams bearing aromatic, heteroaromatic, and aliphatic substituents have been obtained in very high yields and ee’s up to >99%. A slight modification of the procedure also allowed the preparation of ε-lactams in good yields and very high enantioselectivities. Both enantiomers of the final lactams could be prepared with equal efficiency by changing the absolute configuration of the sulfinyl chiral auxiliary

    Multistep Ion Channel Remodeling and Lethal Arrhythmia Precede Heart Failure in a Mouse Model of Inherited Dilated Cardiomyopathy

    Get PDF
    Background: Patients with inherited dilated cardiomyopathy (DCM) frequently die with severe heart failure (HF) or die suddenly with arrhythmias, although these symptoms are not always observed at birth. It remains unclear how and when HF and arrhythmogenic changes develop in these DCM mutation carriers. In order to address this issue, properties of the myocardium and underlying gene expressions were studied using a knock-in mouse model of human inherited DCM caused by a deletion mutation DK210 in cardiac troponinT. Methodology/Principal Findings: By 1 month, DCM mice had already enlarged hearts, but showed no symptoms of HF and a much lower mortality than at 2 months or later. At around 2 months, some would die suddenly with no clear symptoms of HF, whereas at 3 months, many of the survivors showed evident symptoms of HF. In isolated left ventricular myocardium (LV) from 2 month-mice, spontaneous activity frequently occurred and action potential duration (APD) was prolonged. Transient outward (Ito) and ultrarapid delayed rectifier K + (IKur) currents were significantly reduced in DCM myocytes. Correspondingly, down-regulation of Kv4.2, Kv1.5 and KChIP2 was evident in mRNA and protein levels. In LVs at 3-months, more frequent spontaneous activity, greater prolongation of APD and further down-regulation in above K + channels were observed. At 1 month, in contrast, infrequent spontaneous activity and down-regulation of Kv4.2, but not Kv1.5 or KChIP2, were observed

    Childhood Obstructive Sleep Apnea Associates with Neuropsychological Deficits and Neuronal Brain Injury

    Get PDF
    BACKGROUND: Childhood obstructive sleep apnea (OSA) is associated with neuropsychological deficits of memory, learning, and executive function. There is no evidence of neuronal brain injury in children with OSA. We hypothesized that childhood OSA is associated with neuropsychological performance dysfunction, and with neuronal metabolite alterations in the brain, indicative of neuronal injury in areas corresponding to neuropsychological function. METHODS AND FINDINGS: We conducted a cross-sectional study of 31 children (19 with OSA and 12 healthy controls, aged 6–16 y) group-matched by age, ethnicity, gender, and socioeconomic status. Participants underwent polysomnography and neuropsychological assessments. Proton magnetic resonance spectroscopic imaging was performed on a subset of children with OSA and on matched controls. Neuropsychological test scores and mean neuronal metabolite ratios of target brain areas were compared. Relative to controls, children with severe OSA had significant deficits in IQ and executive functions (verbal working memory and verbal fluency). Children with OSA demonstrated decreases of the mean neuronal metabolite ratio N-acetyl aspartate/choline in the left hippocampus (controls: 1.29, standard deviation [SD] 0.21; OSA: 0.91, SD 0.05; p = 0.001) and right frontal cortex (controls: 2.2, SD 0.4; OSA: 1.6, SD 0.4; p = 0.03). CONCLUSIONS: Childhood OSA is associated with deficits of IQ and executive function and also with possible neuronal injury in the hippocampus and frontal cortex. We speculate that untreated childhood OSA could permanently alter a developing child's cognitive potential
    corecore