138 research outputs found

    Galaxy And Mass Assembly (GAMA): The absence of stellar mass segregation in galaxy groups and consistent predictions from GALFORM and EAGLE simulations

    Get PDF
    We investigate the contentious issue of the presence, or lack thereof, of satellites mass segregation in galaxy groups using the Galaxy And Mass Assembly (GAMA) survey, the GALFORM semi-analytic and the EAGLE cosmological hydrodynamical simulation catalogues of galaxy groups. We select groups with halo mass 12log(Mhalo/h1M)<14.512 \leqslant \log(M_{\text{halo}}/h^{-1}M_\odot) <14.5 and redshift z0.32z \leqslant 0.32 and probe the radial distribution of stellar mass out to twice the group virial radius. All the samples are carefully constructed to be complete in stellar mass at each redshift range and efforts are made to regularise the analysis for all the data. Our study shows negligible mass segregation in galaxy group environments with absolute gradients of 0.08\lesssim0.08 dex and also shows a lack of any redshift evolution. Moreover, we find that our results at least for the GAMA data are robust to different halo mass and group centre estimates. Furthermore, the EAGLE data allows us to probe much fainter luminosities (rr-band magnitude of 22) as well as investigate the three-dimensional spatial distribution with intrinsic halo properties, beyond what the current observational data can offer. In both cases we find that the fainter EAGLE data show a very mild spatial mass segregation at z0.22z \leqslant 0.22, which is again not apparent at higher redshift. Interestingly, our results are in contrast to some earlier findings using the Sloan Digital Sky Survey. We investigate the source of the disagreement and suggest that subtle differences between the group finding algorithms could be the root cause

    Galaxy And Mass Assembly (GAMA): growing up in a bad neighbourhood - how do low-mass galaxies become passive?

    Get PDF
    Both theoretical predictions and observations of the very nearby Universe suggest that low-mass galaxies (log10_{10}[M_{*}/M_{\odot}]<9.5) are likely to remain star-forming unless they are affected by their local environment. To test this premise, we compare and contrast the local environment of both passive and star-forming galaxies as a function of stellar mass, using the Galaxy and Mass Assembly survey. We find that passive fractions are higher in both interacting pair and group galaxies than the field at all stellar masses, and that this effect is most apparent in the lowest mass galaxies. We also find that essentially all passive log10_{10}[M_{*}/M_{\odot}]<8.5 galaxies are found in pair/group environments, suggesting that local interactions with a more massive neighbour cause them to cease forming new stars. We find that the effects of immediate environment (local galaxy-galaxy interactions) in forming passive systems increases with decreasing stellar mass, and highlight that this is potentially due to increasing interaction timescales giving sufficient time for the galaxy to become passive via starvation. We then present a simplistic model to test this premise, and show that given our speculative assumptions, it is consistent with our observed results

    SILAC-based phosphoproteomics reveals an inhibitory role of KSR1 in p53 transcriptional activity via modulation of DBC1

    Get PDF
    BACKGROUND We have previously identified kinase suppressor of ras-1 (KSR1) as a potential regulatory gene in breast cancer. KSR1, originally described as a novel protein kinase, has a role in activation of mitogen-activated protein kinases. Emerging evidence has shown that KSR1 may have dual functions as an active kinase as well as a scaffold facilitating multiprotein complex assembly. Although efforts have been made to study the role of KSR1 in certain tumour types, its involvement in breast cancer remains unknown. METHODS A quantitative mass spectrometry analysis using stable isotope labelling of amino acids in cell culture (SILAC) was implemented to identify KSR1-regulated phosphoproteins in breast cancer. In vitro luciferase assays, co-immunoprecipitation as well as western blotting experiments were performed to further study the function of KSR1 in breast cancer. RESULTS Of significance, proteomic analysis reveals that KSR1 overexpression decreases deleted in breast cancer-1 (DBC1) phosphorylation. Furthermore, we show that KSR1 decreases the transcriptional activity of p53 by reducing the phosphorylation of DBC1, which leads to a reduced interaction of DBC1 with sirtuin-1 (SIRT1); this in turn enables SIRT1 to deacetylate p53. CONCLUSION Our findings integrate KSR1 into a network involving DBC1 and SIRT1, which results in the regulation of p53 acetylation and its transcriptional activity

    Galaxy And Mass Assembly (GAMA): the Stellar Mass Budget by Galaxy Type

    Get PDF
    We report an expanded sample of visual morphological classifications from the Galaxy and Mass Assembly (GAMA) survey phase two, which now includes 7,556 objects (previously 3,727 in phase one). We define a local (z <0.06) sample and classify galaxies into E, S0-Sa, SB0-SBa, Sab-Scd, SBab-SBcd, Sd-Irr, and "little blue spheroid" types. Using these updated classifications, we derive stellar mass function fits to individual galaxy populations divided both by morphological class and more general spheroid- or disk-dominated categories with a lower mass limit of log(Mstar/Msun) = 8 (one dex below earlier morphological mass function determinations). We find that all individual morphological classes and the combined spheroid-/bulge-dominated classes are well described by single Schechter stellar mass function forms. We find that the total stellar mass densities for individual galaxy populations and for the entire galaxy population are bounded within our stellar mass limits and derive an estimated total stellar mass density of rho_star = 2.5 x 10^8 Msun Mpc^-3 h_0.7, which corresponds to an approximately 4% fraction of baryons found in stars. The mass contributions to this total stellar mass density by galaxies that are dominated by spheroidal components (E and S0-Sa classes) and by disk components (Sab-Scd and Sd-Irr classes) are approximately 70% and 30%, respectively

    Galaxy And Mass Assembly (GAMA): mass-size relations of z < 0.1 galaxies subdivided by Sersic index, colour and morphology

    Get PDF
    We use data from the Galaxy And Mass Assembly (GAMA) survey in the redshift range 0.01 < z < 0.1 (8399 galaxies in g to Ks bands) to derive the stellar mass–half-light radius relations for various divisions of ‘early’- and ‘late’-type samples. We find that the choice of division between early and late (i.e. colour, shape, morphology) is not particularly critical; however, the adopted mass limits and sample selections (i.e. the careful rejection of outliers and use of robust fitting methods) are important. In particular, we note that for samples extending to low stellar mass limits (<10 10 M ⊙ ) the Sérsic index bimodality, evident for high-mass systems, becomes less distinct and no-longer acts as a reliable separator of early- and late-type systems. The final set of stellar mass–half-light radius relations are reported for a variety of galaxy population subsets in 10 bands (ugrizZY JHKs) and are intended to provide a comprehensive low-z benchmark for the many ongoing high-z studies. Exploring the variation of the stellar mass–half-light radius relations with wavelength, we confirm earlier findings that galaxies appear more compact at longer wavelengths albeit at a smaller level than previously noted: at 10 10 M ⊙ both spiral systems and ellipticals show a decrease in size of 13 per cent from g to Ks (which is near linear in log wavelength). Finally, we note that the sizes used in this work are derived from 2D Sérsic light profile fitting (using galfit3), i.e. elliptical semimajor half-light radii, improving on earlier low-z benchmarks based on circular apertures

    Galaxy And Mass Assembly (GAMA): mass-size relations of z < 0.1 galaxies subdivided by Sersic index, colour and morphology

    Get PDF
    We use data from the Galaxy And Mass Assembly (GAMA) survey in the redshift range 0.01 < z < 0.1 (8399 galaxies in g to Ks bands) to derive the stellar mass–half-light radius relations for various divisions of ‘early’- and ‘late’-type samples. We find that the choice of division between early and late (i.e. colour, shape, morphology) is not particularly critical; however, the adopted mass limits and sample selections (i.e. the careful rejection of outliers and use of robust fitting methods) are important. In particular, we note that for samples extending to low stellar mass limits (<10 10 M ⊙ ) the Sérsic index bimodality, evident for high-mass systems, becomes less distinct and no-longer acts as a reliable separator of early- and late-type systems. The final set of stellar mass–half-light radius relations are reported for a variety of galaxy population subsets in 10 bands (ugrizZY JHKs) and are intended to provide a comprehensive low-z benchmark for the many ongoing high-z studies. Exploring the variation of the stellar mass–half-light radius relations with wavelength, we confirm earlier findings that galaxies appear more compact at longer wavelengths albeit at a smaller level than previously noted: at 10 10 M ⊙ both spiral systems and ellipticals show a decrease in size of 13 per cent from g to Ks (which is near linear in log wavelength). Finally, we note that the sizes used in this work are derived from 2D Sérsic light profile fitting (using galfit3), i.e. elliptical semimajor half-light radii, improving on earlier low-z benchmarks based on circular apertures

    Galaxy And Mass Assembly (GAMA): M-star-R-e relations of z=0 bulges, discs and spheroids

    Get PDF
    We perform automated bulge + disc decomposition on a sample of ~7500 galaxies from the Galaxy And Mass Assembly (GAMA) survey in the redshift range of 0.002<z<0.06 using SIGMA, a wrapper around GALFIT3. To achieve robust profile measurements we use a novel approach of repeatedly fitting the galaxies, varying the input parameters to sample a large fraction of the input parameter space. Using this method we reduce the catastrophic failure rate significantly and verify the confidence in the fit independently of \chi^2 Additionally, using the median of the final fitting values and the 16^{th}$ and 84^{th} percentile produces more realistic error estimates than those provided by GALFIT, which are known to be underestimated. We use the results of our decompositions to analyse the stellar mass - half-light radius relations of bulges, discs and spheroids. We further investigate the association of components with a parent disc or elliptical relation to provide definite z=0 disc and spheroid M-star-R-e} relations. We conclude by comparing our local disc and spheroid M-star-R-e} to simulated data from EAGLE and high redshift data from CANDELS-UDS. We show the potential of using the mass-size relation to study galaxy evolution in both cases but caution that for a fair comparison all data sets need to be processed and analysed in the same manner

    Promoting mental health in small-medium enterprises: An evaluation of the "Business in Mind" program

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Workplace mental health promotion (WMHP) aims to prevent and effectively manage the social and economic costs of common mental illnesses such as depression. The mental health of managers and employees within small-medium enterprises (SMEs) is a neglected sector in occupational health research and practice, despite the fact that this sector is the most common work setting in most economies. The availability and propensity of SME staff to attend face-to-face training/therapy or workshop style interventions often seen in corporate or public sector work settings is a widely recognised problem. The 'Business in Mind' program employs a DVD mode of delivery that is convenient for SME managers, particularly those operating in regional and remote areas where internet delivery may not be optimal. The objective of the intervention program is to improve the mental health of SME managers, and examine whether employees of managers' whose mental health improves, report positive change in their psychosocial work environment. The mechanisms via which we aim to improve managers' mental health are through the development of their psychological capital (a higher order construct comprised of hope, self efficacy, resilience and optimism) and their skills and capacities for coping with work stress.</p> <p>Methods/Design</p> <p>The effectiveness of two versions of the program (self administered and telephone facilitated) will be assessed using a randomised trial with an active control condition (psychoeducation only). We aim to recruit a minimum of 249 managers and a sample of their employees. This design allows for 83 managers per group, as power analyses showed that this number would allow for attrition of 20% and still enable detection of an effect size of 0.5. The intervention will be implemented over a three month period and postal surveys will assess managers and employees in each group at baseline, intervention completion, and at 6 month follow up. The intervention groups (managers only) will also be assessed at 12 and 24 month follow-up to examine maintenance of effects. Primary outcomes are managers' levels of psychological capital (hope, resilience, self-efficacy and optimism), coping strategies, anxiety and depression symptoms, self-reported health, job satisfaction and job tension. Secondary outcomes are participating managers subordinates' perceptions of manager support, relational justice, emotional climate and job tension. In order to provide an economic evaluation of the intervention, both employees and manager rates of absenteeism and presenteeism will also be assessed.</p> <p>Discussion</p> <p>The intervention being trialled is expected to improve both primary and secondary outcomes. If proven efficacious, the intervention could be disseminated to reach a much larger proportion of the business community.</p> <p>Trial registration</p> <p>Current controlled trials ISRCTN 62853520</p

    Galaxy And Mass Assembly (GAMA): the effect of close interactions on star formation in galaxies

    Get PDF
    The modification of star formation (SF) in galaxy interactions is a complex process, with SF observed to be both enhanced in major mergers and suppressed in minor pair interactions. Such changes likely to arise on short timescales and be directly related to the galaxy-galaxy interaction time. Here we investigate the link between dynamical phase and direct measures of SF on different timescales for pair galaxies, targeting numerous star-formation rate (SFR) indicators and comparing to pair separation, individual galaxy mass and pair mass ratio. We split our sample into the higher (primary) and lower (secondary) mass galaxies in each pair and find that SF is indeed enhanced in all primary galaxies but suppressed in secondaries of minor mergers. We find that changes in SF of primaries is consistent in both major and minor mergers, suggesting that SF in the more massive galaxy is agnostic to pair mass ratio. We also find that SF is enhanced/suppressed more strongly for short-time duration SFR indicators (e.g. H-alpha), highlighting recent changes to SF in these galaxies, which are likely to be induced by the interaction. We propose a scenario where the lower mass galaxy has its SF suppressed by gas heating or stripping, while the higher mass galaxy has its SF enhanced, potentially by tidal gas turbulence and shocks. This is consistent with the seemingly contradictory observations for both SF suppression and enhancement in close pairs

    Galaxy And Mass Assembly (GAMA): the effect of close interactions on star formation in galaxies

    Get PDF
    The modification of star formation (SF) in galaxy interactions is a complex process, with SF observed to be both enhanced in major mergers and suppressed in minor pair interactions. Such changes likely to arise on short timescales and be directly related to the galaxy-galaxy interaction time. Here we investigate the link between dynamical phase and direct measures of SF on different timescales for pair galaxies, targeting numerous star-formation rate (SFR) indicators and comparing to pair separation, individual galaxy mass and pair mass ratio. We split our sample into the higher (primary) and lower (secondary) mass galaxies in each pair and find that SF is indeed enhanced in all primary galaxies but suppressed in secondaries of minor mergers. We find that changes in SF of primaries is consistent in both major and minor mergers, suggesting that SF in the more massive galaxy is agnostic to pair mass ratio. We also find that SF is enhanced/suppressed more strongly for short-time duration SFR indicators (e.g. H-alpha), highlighting recent changes to SF in these galaxies, which are likely to be induced by the interaction. We propose a scenario where the lower mass galaxy has its SF suppressed by gas heating or stripping, while the higher mass galaxy has its SF enhanced, potentially by tidal gas turbulence and shocks. This is consistent with the seemingly contradictory observations for both SF suppression and enhancement in close pairs
    corecore