30 research outputs found

    Different types of intranasal steroids for chronic rhinosinusitis

    Get PDF
    BACKGROUND: This review is one of six looking at the primary medical management options for patients with chronic rhinosinusitis.Chronic rhinosinusitis is common and is characterised by inflammation of the lining of the nose and paranasal sinuses leading to nasal blockage, nasal discharge, facial pressure/pain and loss of sense of smell. The condition can occur with or without nasal polyps. Topical (intranasal) corticosteroids are used with the aim of reducing inflammation in the sinonasal mucosa in order to improve patient symptoms. OBJECTIVES: To assess the effects of different types of intranasal steroids in people with chronic rhinosinusitis. SEARCH METHODS: The Cochrane ENT Information Specialist searched the ENT Trials Register; Central Register of Controlled Trials (CENTRAL 2015, Issue 7); MEDLINE; EMBASE; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 11 August 2015. SELECTION CRITERIA: Randomised controlled trials (RCTs) with a follow-up period of at least three months comparing first-generation intranasal corticosteroids (e.g. beclomethasone dipropionate, triamcinolone acetonide, flunisolide, budesonide) with second-generation intranasal corticosteroids (e.g. ciclesonide, fluticasone furoate, fluticasone propionate, mometasone furoate, betamethasone sodium phosphate), or sprays versus drops, or low-dose versus high-dose intranasal corticosteroids. DATA COLLECTION AND ANALYSIS: We used the standard methodological procedures expected by Cochrane. Our primary outcomes were disease-specific health-related quality of life (HRQL), patient-reported disease severity and the commonest adverse event - epistaxis (nosebleed). Secondary outcomes included general HRQL, endoscopic nasal polyp score, computerised tomography (CT) scan score and the adverse event of local irritation. We used GRADE to assess the quality of the evidence for each outcome; this is indicated in italics. MAIN RESULTS: We included nine RCTs (911 participants), including four different comparisons. None of the studies evaluated our first primary outcome measure, disease-specific HRQL. Fluticasone propionate versus beclomethasone dipropionateWe identified two small studies (56 participants with polyps) that evaluated disease severity and looked at the primary adverse effect: epistaxis , but no other outcomes. We cannot report any numerical data but the study authors reported no difference between the two steroids. The evidence was of very low quality. Fluticasone propionate versus mometasone furoateWe identified only one study (100 participants with polyps) that evaluated disease severity (nasal symptoms scores), which reported no difference (no numerical data available). The evidence was of very low quality. High-dose versus low-dose steroidsWe included five studies (663 participants with nasal polyps), three using mometasone furoate (400 ”g versus 200 ”g in adults and older children, 200 ”g versus 100 ”g in younger children) and two using fluticasone propionate drops (800 ”g versus 400 ”g). We found low quality evidence relating to disease severity and nasal polyps size, with results from the high-dose and low-dose groups being similar. Although all studies reported more improvement in polyp score in the high-dose group, the significance of this is unclear due to the small size of the improvements.The primary adverse effect, epistaxis , was more common when higher doses were used (risk ratio (RR) 2.06, 95% confidence interval (CI) 1.20 to 3.54, 637 participants, moderate quality evidence). Most of the studies that contributed data to this outcome used a broad definition of epistaxis, which ranged from frank bleeding to bloody nasal discharge to flecks of blood in the mucus. Aqueous nasal spray versus aerosol sprayWe identified only one poorly reported study (unclear number of participants for comparison of interest, 91 between three treatment arms), in which there were significant baseline differences between the participants in the two groups. We were unable to draw meaningful conclusions from the data. AUTHORS' CONCLUSIONS: We found insufficient evidence to suggest that one type of intranasal steroid is more effective than another in patients with chronic rhinosinusitis, nor that the effectiveness of a spray differs from an aerosol. We identified no studies that compared drops with spray.It is unclear if higher doses result in better symptom improvements (low quality evidence), but there was moderate quality evidence of an increased risk of epistaxis as an adverse effect of treatment when higher doses were used. This included all levels of severity of epistaxis and it is likely that the proportion of events that required patients to discontinue usage is low due to the low numbers of withdrawals attributed to it. If epistaxis is limited to streaks of blood in the mucus it may be tolerated by the patient and it may be safe to continue treatment. However, it may be a factor that affects compliance.There is insufficient evidence to suggest that the different types of corticosteroid molecule or spray versus aerosol have different effects. Lower doses have similar effectiveness but fewer side effects.Clearly more research in this area is needed, with specific attention given to trial design, disease-specific health-related quality of life outcomes and evaluation of longer-term outcomes and adverse effects

    Intranasal steroids versus placebo or no intervention for chronic rhinosinusitis

    Get PDF
    BACKGROUND: This review is one of six looking at the primary medical management options for patients with chronic rhinosinusitis.Chronic rhinosinusitis is common and is characterised by inflammation of the lining of the nose and paranasal sinuses leading to nasal blockage, rhinorrhoea, facial pressure/pain and loss of sense of smell. The condition can occur with or without nasal polyps. The use of topical (intranasal) corticosteroids has been widely advocated for the treatment of chronic rhinosinusitis given the belief that inflammation is a major component of this condition.  OBJECTIVES: To assess the effects of intranasal corticosteroids in people with chronic rhinosinusitis.  SEARCH METHODS: The Cochrane ENT Information Specialist searched the Cochrane ENT Trials Register; Central Register of Controlled Trials (CENTRAL 2015, Issue 8); MEDLINE; EMBASE; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 11 August 2015.  SELECTION CRITERIA: Randomised controlled trials (RCTs) with a follow-up period of at least three months comparing intranasal corticosteroids (e.g. beclomethasone dipropionate, triamcinolone acetonide, flunisolide, budesonide) against placebo or no treatment in patients with chronic rhinosinusitis.  DATA COLLECTION AND ANALYSIS: We used the standard methodological procedures expected by Cochrane. Our primary outcomes were disease-specific health-related quality of life (HRQL), patient-reported disease severity and the commonest adverse event - epistaxis. Secondary outcomes included general HRQL, endoscopic nasal polyp score, computerised tomography (CT) scan score and the adverse events of local irritation or other systemic adverse events. We used GRADE to assess the quality of the evidence for each outcome; this is indicated in italics.  MAIN RESULTS: We included 18 RCTs with a total of 2738 participants. Fourteen studies had participants with nasal polyps and four studies had participants without nasal polyps. Only one study was conducted in children. Intranasal corticosteroids versus placebo or no interventionOnly one study (20 adult participants without polyps) measured our primary outcome disease-specific HRQL using the Rhinosinusitis Outcome Measures-31 (RSOM-31). They reported no significant difference (numerical data not available) (very low quality evidence).Our second primary outcome, disease severity , was measured using the Chronic Sinusitis Survey in a second study (134 participants without polyps), which found no important difference (mean difference (MD) 2.84, 95% confidence interval (CI) -5.02 to 10.70; scale 0 to 100). Another study (chronic rhinosinusitis with nasal polyps) reported an increased chance of improvement in the intranasal corticosteroids group (RR 2.78, 95% CI 1.76 to 4.40; 109 participants). The quality of the evidence was low.Six studies provided data on at least two of the individualsymptoms used in the EPOS 2012 criteria to define chronic rhinosinusitis (nasal blockage, rhinorrhoea, loss of sense of smell and facial pain/pressure). When all four symptoms in the EPOS criteria were available on a scale of 0 to 3 (higher = more severe symptoms), the average MD in change from baseline was -0.26 (95% CI -0.37 to -0.15; 243 participants; two studies; low quality evidence). Although there were more studies and participants when only nasal blockage and rhinorrhoea were considered (MD -0.31, 95% CI -0.38 to -0.24; 1702 participants; six studies), the MD was almost identical to when loss of sense of smell was also considered (1345 participants, four studies; moderate quality evidence).When considering the results for the individual symptoms, benefit was shown in the intranasal corticosteroids group. The effect size was larger for nasal blockage (MD -0.40, 95% CI -0.52 to -0.29; 1702 participants; six studies) than for rhinorrhoea (MD -0.25, 95% CI -0.33 to -0.17; 1702 participants; six studies) or loss of sense of smell (MD -0.19, 95% CI -0.28 to -0.11; 1345 participants; four studies). There was heterogeneity in the analysis for facial pain/pressure (MD -0.27, 95% CI -0.56 to 0.02; 243 participants; two studies). The quality of the evidence was moderate for nasal blockage, rhinorrhoea and loss of sense of smell, but low for facial pain/pressure.There was an increased risk of epistaxis with intranasal corticosteroids (risk ratio (RR) 2.74, 95% CI 1.88 to 4.00; 2508 participants; 13 studies; high quality evidence).Considering our secondary outcome, general HRQL, one study (134 participants without polyps) measured this using the SF-36 and reported a statistically significant benefit only on the general health subscale. The quality of the evidence was very low.It is unclear whether there is a difference in the risk of local irritation (RR 0.94, 95% CI 0.53 to 1.64; 2124 participants; 11 studies) (low quality evidence).None of the studies treated or followed up patients long enough to provide meaningful data on the risk of osteoporosis or stunted growth (children). Other comparisonsWe identified no other studies that compared intranasal corticosteroids plus co-intervention A versus placebo plus co-intervention A.  AUTHORS' CONCLUSIONS: Most of the evidence available was from studies in patients with chronic rhinosinusitis with nasal polyps. There is little information about quality of life (very low quality evidence). For disease severity, there seems to be improvement for all symptoms (low quality evidence), a moderate-sized benefit for nasal blockage and a small benefit for rhinorrhoea (moderate quality evidence). The risk of epistaxis is increased (high quality evidence), but these data included all levels of severity; small streaks of blood may not be a major concern for patients. It is unclear whether there is a difference in the risk of local irritation (low quality evidence)

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Adenoidectomy techniques: UK survey

    No full text

    Death from overwhelming odontogenic sepsis: a case report

    No full text
    corecore