1,038 research outputs found

    Construction and characterization of a large insert porcine YAC library

    Get PDF
    The recent construction of genetic linkage maps of the porcine genome (Rohrer et al. 1994, 1996; Ellegren et al. 1994; Archibald et al. 1995) allows the assignment of loci affecting heritable traits of economic importance (ETLs; Lander and Botstein 1989) to specific chromosomal segments. Markers can thus be identified that may be useful in marker-assisted selection (MAS) to increase the frequency of favorable allele(s) in resource populations (reviewed in Soller 1994). In addition, mapping of these loci creates the opportunity to identify gene(s) influencing a trait, through positional cloning or positional cnadidate gene approaches (Grootscholten et al. 1991). A positional cloning strategy requires the construction of contigs that physically span large sections of chromosomes. In the human and mouse systems, contig construction has depended on the availability of multiple YAC libraries that provide depth of coverage to minimize the impact of chimeric and deleted clones inherent in these libraries. A single porcine genomic YAC library has been reported (Leeb et al. 1995), but contains only one genome coverage, which limits the ability to make large contigs. We report the construction of a porcine YAC library, with approximately 5.5-fold coverage of the genome and a low rate of chimerism, that provides an additional resource for contig construction and positional cloning

    Global warming: is weight loss a solution?

    Get PDF
    The current climate change has been most likely caused by the increased greenhouse gas emissions. We have looked at the major greenhouse gas, carbon dioxide (CO2), and estimated the reduction in the CO2 emissions that would occur with the theoretical global weight loss. The calculations were based on our previous weight loss study, investigating the effects of a low-carbohydrate diet on body weight, body composition and resting metabolic rate of obese volunteers with type 2 diabetes. At 6 months we observed decreases in weight, fat mass, fat free mass and CO2 production. We estimated that a 10 kg weight loss of all obese and overweight people would result in a decrease of 49.560 Mt of CO2 per year, which would equal to 0.2 % of the CO2 emitted globally in 2007. This reduction could help meet the CO2 emission reduction targets and unquestionably would be of a great benefit to the global health

    Deducing the source and composition of rare earth mineralising fluids in carbonatites: insights from isotopic (C, O, 87Sr/86Sr) data from Kangankunde, Malawi

    Get PDF
    This is the final version of the article. Available from Springer Verlag via the DOI in this record.Carbonatites host some of the largest and highest grade rare earth element (REE) deposits but the composition and source of their REE-mineralising fluids remains enigmatic. Using C, O and 87Sr/86Sr isotope data together with major and trace element compositions for the REE-rich Kangankunde carbonatite (Malawi), we show that the commonly observed, dark brown, Fe-rich carbonatite that hosts REE minerals in many carbonatites is decoupled from the REE mineral assemblage. REE-rich ferroan dolomite carbonatites, containing 8–15 wt% REE2O3, comprise assemblages of monazite-(Ce), strontianite and baryte forming hexagonal pseudomorphs after probable burbankite. The 87Sr/86Sr values (0.70302–0.70307) affirm a carbonatitic origin for these pseudomorph-forming fluids. Carbon and oxygen isotope ratios of strontianite, representing the REE mineral assemblage, indicate equilibrium between these assemblages and a carbonatite-derived, deuteric fluid between 250 and 400 °C (δ18O + 3 to + 5‰VSMOW and δ13C − 3.5 to − 3.2‰VPDB). In contrast, dolomite in the same samples has similar δ13C values but much higher δ18O, corresponding to increasing degrees of exchange with low-temperature fluids (< 125 °C), causing exsolution of Fe oxides resulting in the dark colour of these rocks. REE-rich quartz rocks, which occur outside of the intrusion, have similar δ18O and 87Sr/86Sr to those of the main complex, indicating both are carbonatite-derived and, locally, REE mineralisation can extend up to 1.5 km away from the intrusion. Early, REE-poor apatite-bearing dolomite carbonatite (beforsite: δ18O + 7.7 to + 10.3‰ and δ13C −5.2 to −6.0‰; 87Sr/86Sr 0.70296–0.70298) is not directly linked with the REE mineralisation.This project was funded by the UK Natural Environment Research Council (NERC) SoS RARE project (NE/M011429/1) and by NIGL (NERC Isotope Geoscience Laboratory) Project number 20135
    corecore