1,609 research outputs found

    Promoting Social Behaviour in Reducing Peak Electricity Consumption Using Multi-Agent Systems

    Get PDF
    As we move towards an energy system based on renewable energy sources, we need to consider their inflexibility to meet sudden peaks in demand. It is therefore important to reduce the peak load placed on our energy system. For individual households this means spreading out the use of high-powered appliances, such as dishwashers and washing machines, throughout the day. Traditional approaches to this problem have relied on differential pricing set by a centralised utility company, but this mechanism has not been effective in promoting widespread shifting of appliance usage. Our previous research investigated a decentralised mechanism where agents receive an initial allocation of time-slots to use their appliances, which they can then exchange with other agents. This was found to be an effective approach to reducing the peak load within a community energy system when we introduced social capital, the tracking of favours given and received, in order to incentivise agents to act flexibly by accepting exchanges that do not immediately benefit them. This system encouraged self-interested agents to learn socially beneficial behaviour in order to earn social capital that they could later use to improve their own performance. In this paper we expand this work by implementing real world household appliance usage data in order to ensure that our mechanism could adapt to the challenging demand needs of real households. We also demonstrate how smaller and more diverse populations can optimise more effectively than larger community energy systems and better overcome the challenges of real-world demand peaks

    Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer

    Get PDF
    Over the recent years chirped-pulse, Fourier-transform microwave (CP-FTMW) spectrometers have chan- ged the scope of rotational spectroscopy. The broad frequency and large dynamic range make possible structural determinations in molecular systems of increasingly larger size from measurements of heavy atom (13C, 15N, 18O) isotopes recorded in natural abundance in the same spectrum as that of the parent isotopic species. The design of a broadband spectrometer operating in the 2–8 GHz frequency range with further improvements in sensitivity is presented. The current CP-FTMW spectrometer performance is benchmarked in the analyses of the rotational spectrum of the water heptamer, (H2O)7, in both 2– 8 GHz and 6–18 GHz frequency ranges. Two isomers of the water heptamer have been observed in a pulsed supersonic molecular expansion. High level ab initio structural searches were performed to pro- vide plausible low-energy candidates which were directly compared with accurate structures provided from broadband rotational spectra. The full substitution structure of the most stable species has been obtained through the analysis of all possible singly-substituted isotopologues (H218O and HDO), and a least-squares rm(1) geometry of the oxygen framework determined from 16 different isotopic species compares with the calculated O–O equilibrium distances at the 0.01 Å level

    Prospects for local co-governance

    Get PDF
    British local authorities and their partners are increasingly developing new ways of working together with local communities. The nature of this co-working, however, is complex, multi-faceted and little understood. This article argues for greater clarity of thinking on the topic, by analysing this co-working as a form of political co-governance, and drawing attention in particular to issues of scale and democracy. Using evidence from a study of 43 local authority areas, 16 authorities are identified where co-governance is practised, following three main types of approach: service-influencing, service-delivering and parish council developing. It is concluded that strengthening political co-governance is essential for a healthy democracy

    The UV, Optical, and IR Properties of SDSS Sources Detected by GALEX

    Full text link
    We discuss the UV, optical, and IR properties of the SDSS sources detected by GALEX as part of its All-sky Imaging Survey Early Release Observations. Virtually all of the GALEX sources in the overlap region are detected by SDSS. GALEX sources represent ~2.5% of all SDSS sources within these fields and about half are optically unresolved. Most unresolved GALEX/SDSS sources are bright blue turn-off thick disk stars and are typically detected only in the GALEX near-UV band. The remaining unresolved sources include low-redshift quasars, white dwarfs, and white dwarf/M dwarf pairs, and these dominate the optically unresolved sources detected in both GALEX bands. Almost all the resolved SDSS sources detected by GALEX are fainter than the SDSS 'main' spectroscopic limit. These sources have colors consistent with those of blue (spiral) galaxies (u-r<2.2), and most are detected in both GALEX bands. Measurements of their UV colors allow much more accurate and robust estimates of star-formation history than are possible using only SDSS data. Indeed, galaxies with the most recent (<20 Myr) star formation can be robustly selected from the GALEX data by requiring that they be brighter in the far-UV than in the near-UV band. However, older starburst galaxies have UV colors similar to AGN, and thus cannot be selected unambiguously on the basis of GALEX fluxes alone. With the aid of 2MASS data, we construct and discuss median 10 band UV-optical-IR spectral energy distributions for turn-off stars, hot white dwarfs, low-redshift quasars, and spiral and elliptical galaxies. We point out the high degree of correlation between the UV color and the contribution of the UV flux to the UV-optical-IR flux of galaxies detected by GALEX.Comment: 35 pages, 11 figures, 3 tables; to appear in the AJ. PS with better figures available from http://www.astro.washington.edu/agueros/pub

    The Role of Non-Covalent Interactions on Cluster Formation: Pentamer, Hexamers and Heptamer of Difluoromethane

    Get PDF
    The role of non-covalent interactions (NCIs) has broadened with the inclusion of new types of interactions and a plethora of weak donor/acceptor partners. This work illustrates the potential of chirped-pulse Fourier transform microwave technique, which has revolutionized the field of rotational spectroscopy. In particular, it has been exploited to reveal the role of NCIs' in the molecular self-aggregation of difluoromethane where a pentamer, two hexamers and a heptamer were detected. The development of a new automated assignment program and a sophisticated computational screening protocol was essential for identifying the homoclusters in conditions of spectral congestion. The major role of dispersion forces leads to less directional interactions and more distorted structures than those found in polar clusters, although a detailed analysis demonstrates that the dominant interaction energy is the pairwise interaction. The tetramer cluster is identified as a structural unit in larger clusters, representing the maximum expression of bond between dimers.We thank MINECO (CTQ2017-89150-R), Basque Government (IT1162-19 and PIBA2018-11), the UPV/EHU (PPG17/10, GIU18/207), CSIC (2018FR0036, LINKA20249), University of Bologna (RFO), Fondazione CARISBO (2018/0353) and NSF (CHE-1903871 and CHE-2018427) for the financial support. C.C thanks MINECO for a Juan de la Cierva contract. L.E. was supported by Marie Curie fellowship PIOF-GA-2012-32840

    Helicity-Selective Enhancement and Polarization Control of Attosecond High Harmonic Waveforms Driven by Bichromatic Circularly Polarized Laser Fields

    Get PDF
    source of bright, circularly polarized, extreme ultraviolet, and soft x-ray beams, where the individual harmonics themselves are completely circularly polarized. Here, we demonstrate the ability to preferentially select either the right or left circularly polarized harmonics simply by adjusting the relative intensity ratio of the bichromatic circularly polarized driving laser field. In the frequency domain, this significantly enhances the harmonic orders that rotate in the same direction as the higher-intensity driving laser. In the time domain, this helicity-dependent enhancement corresponds to control over the polarization of the resulting attosecond waveforms. This helicity control enables the generation of circularly polarized high harmonics with a user-defined polarization of the underlying attosecond bursts. In the future, this technique should allow for the production of bright highly elliptical harmonic supercontinua as well as the generation of isolated elliptically polarized attosecond pulses.H. K. and M. M. graciously acknowledge support from the Department of Energy BES Award No. DE-FG02- 99ER14982 for the experimental implementation, as well as a MURI grant from the Air Force Office of Scientific Research under Award No. FA9550-16-1-0121 for the theory. J. E. and C. M. acknowledge support from National Science Foundation Graduate Research Fellowships (Grant No. DGE-1144083). C. H.-G. acknowl- edges support from the Marie Curie International Outgoing Fellowship within the EU Seventh Framework Programme for Research and Technological Development (2007-2013), under REA Grant No. 328334, from Junta de Castilla y León (Project No. SA046U16) and Spanish Ministerio de Economía y Competitividad, MINECO (Projects No. FIS2013-44174-P and No. FIS2016-75652-P). Part of this work utilized the Janus supercomputer, which is sup- ported by the U.S. National Science Foundation (Grant No. CNS-0821794) and the University of Colorado Boulder

    Spitzer Space Telescope observations of the Carina Nebula: The steady march of feedback-driven star formation

    Full text link
    We report the first results of imaging the Carina Nebula with Spitzer/IRAC, providing a catalog of point sources and YSOs based on SED fits. We discuss several aspects of the extended emission, including dust pillars that result when a clumpy molecular cloud is shredded by massive star feedback. There are few "extended green objects" (EGOs) normally taken as signposts of outflow activity, and none of the HH jets detected optically are seen as EGOs. A population of "extended red objects" tends to be found around OB stars, some with clear bow-shocks. These are dusty shocks where stellar winds collide with flows off nearby clouds. Finally, the relative distributions of O stars and subclusters of YSOs as compared to dust pillars shows that while some YSOs are located within pillars, many more stars and YSOs reside just outside pillar heads. We suggest that pillars are transient phenomena, part of a continuous outwardly propagating wave of star formation driven by massive star feedback. As pillars are destroyed, they leave newly formed stars in their wake, which are then subsumed into the young OB association. Altogether, the current generation of YSOs shows no strong deviation from a normal IMF. The number of YSOs suggests a roughly constant star-formation rate over the past 3Myr, implying that star formation in pillars constitutes an important mechanism to construct unbound OB associations. Accelerated pillars may give birth to O-type stars that, after several Myr, could appear to have formed in isolation.Comment: 25 pages, 15 figures, MNRAS accepte
    • 

    corecore