6,319 research outputs found
Recommended from our members
Midwifery students' experiences in a health visiting placement: An interview study
In the UK, there is a clear remit for midwives and health visitors to work collaboratively to care for pregnant women and new mothers. This study evaluated a clinical placement for midwifery students with health visitor mentors. The evaluation explored the experience of mentors and students during the placement, the effect on their understanding of the different roles and the potential effect on collaborative working in the future. Results indicated that students developed their knowledge of the health visitor role and learned transferable skills to take back to midwifery. They saw little collaborative practice, but identified ways to incorporate interprofessional working into their practice once qualified. Mentors were positive about sharing health visiting practice and the potential impact on relationships in the future
Recommended from our members
Midwifery students in health visitor placements: the importance of student-mentor relationships
OBJECTIVE: The aim of this study was to explore midwifery students and health visitor practice mentors experiences of a health visiting placement for midwifery students, focusing on the student-mentor relationship. DESIGN: Interview study SETTING: East London, United Kingdom PARTICIPANTS: Eighteen students and eighteen mentors were invited to take part in an interview. Ten midwifery students (55.5%) and fifteen health visitor practice mentors (83.3%) took part in interviews or provided information via email. Thematic analysis was used to analyse findings. FINDINGS: The main study finding was that students reported valuing practice mentors who took the time to get to know them, were welcoming and enthusiastic and planned their time in advance. The mentors in turn spoke highly of the students who were keen and enthusiastic about the placement, but noted that not all students had appeared interested. KEY CONCLUSIONS: The findings from this small interview study show that taking time to make the students feel welcome was important to facilitate a student-mentor relationship. Another important factor in whether a student enjoyed their placement was the mentors' advance planning
Where to Find 1.5 Million Yr Old Ice for the IPICS Oldest Ice Ice Core
Abstract. The recovery of a 1.5 million yr long ice core from Antarctica represents a keystone of our understanding of Quaternary climate, the progression of glaciation over this time period and the role of greenhouse gas cycles in this pro- gression. Here we tackle the question of where such ice may still be found in the Antarctic ice sheet. We can show that such old ice is most likely to exist in the plateau area of the East Antarctic ice sheet (EAIS) without stratigraphic distur- bance and should be able to be recovered after careful pre- site selection studies. Based on a simple ice and heat flow model and glaciological observations, we conclude that po- sitions in the vicinity of major domes and saddle position
on the East Antarctic Plateau will most likely have such old ice in store and represent the best study areas for dedicated reconnaissance studies in the near future. In contrast to pre- vious ice core drill site selections, however, we strongly sug- gest significantly reduced ice thickness to avoid bottom melt- ing. For example for the geothermal heat flux and accumu- lation conditions at Dome C, an ice thickness lower than but close to about 2500 m would be required to find 1.5 Myr old ice (i.e., more than 700m less than at the current EPICA Dome C drill site). Within this constraint, the resolution of an Oldest-Ice record and the distance of such old ice to the bedrock should be maximized to avoid ice flow disturbances,
for example, by finding locations with minimum geothermal heat flux. As the geothermal heat flux is largely unknown for the EAIS, this parameter has to be carefully determined be- forehand. In addition, detailed bedrock topography and ice flow history has to be reconstructed for candidates of an Oldest-Ice ice coring site. Finally, we argue strongly for rapid access drilling before any full, deep ice coring activity com- mences to bring datable samples to the surface and to allow an age check of the oldest ice
Carbon cycle dynamics during episodes of rapid climate change
Past climate records reveal many instances of rapid climate change that are often coincident with fast changes in atmospheric greenhouse gas concentrations, suggesting links and positive feedbacks between the carbon cycle and the physical climate system. The carbon reservoirs that might have played an important role during these past episodes of rapid change include near-surface soil and peatland carbon, permafrost, carbon stored in vegetation, methane hydrates in deep-sea sediments, volcanism, and carbon stored in parts of the ocean that are easily ventilated through changes in circulation. To determine whether similar changes might lie in store in our future, we must gain a better understanding of the physics, biogeochemistry, dynamics, and feedbacks involved in such events. Specifically, we need to ascertain the main natural sources of atmospheric carbon dioxide and methane linked to rapid climate events in the paleoclimate record, and understand the mechanisms, triggers, thresholds, and feedbacks that were involved. Our review contributes to this focus issue by synthesizing results from nine studies covering a broad range of past time episodes. Studies are categorized into (a) episodes of massive carbon release millions of years ago; (b) the transition from the last glacial to the current interglacial 19 000–11 000 years ago; and (c) the current era. We conclude with a discussion on major remaining research challenges and implications for future projections and risk assessment.Publisher PDFPeer reviewe
From the Rarest to the Most Common: Insights from Progeroid Syndromes into Skin Cancer and Aging
Despite their rarity, diseases of premature aging, or “progeroid” syndromes, have provided important insights into basic mechanisms that may underlie cancer and normal aging. In this review, we highlight these recent developments in Hutchinson—Gilford progeria syndrome (HGPS), Werner syndrome, Bloom syndrome, Cockayne syndrome, trichothiodystrophy, ataxia-telangiectasia, Rothmund–Thomson syndrome, and xeroderma pigmentosum. Though they are caused by different mutations in various genes and often result in quite disparate phenotypes, deciphering the molecular bases of these conditions has served to highlight their underlying basic similarities. Studies of progeroid syndromes, particularly HGPS, the most dramatic form of premature aging, have contributed to our knowledge of fundamental processes of importance to skin biology, including DNA transcription, replication, and repair, genome instability, cellular senescence, and stem-cell differentiation
Longitudinal Analysis of Antibody Responses to Trachoma Antigens Before and After Mass Drug Administration.
Blinding trachoma, caused by the bacteria Chlamydia trachomatis, is a neglected tropical disease targeted for elimination by 2020. A major component of the elimination strategy is mass drug administration (MDA) with azithromycin. Currently, program decisions are made based on clinical signs of ocular infection, but we have been investigating the use of antibody responses for post-MDA surveillance. In a previous study, IgG responses were detected in children lacking clinical evidence of trachoma, suggesting that IgG responses represented historical infection. To explore the utility of serology for program evaluation, we compared IgG and IgA responses to trachoma antigens and examined changes in IgG and IgA post-drug treatment. Dried blood spots and ocular swabs were collected with parental consent from 264 1-6 year olds in a single village of Kongwa District, central Tanzania. Each child also received an ocular exam for detection of clinical signs of trachoma. MDA was given, and six months later an additional blood spot was taken from these same children. Ocular swabs were analyzed for C. trachomatis DNA and antibody responses for IgA and total IgG were measured in dried bloods spots. Baseline antibody responses showed an increase in antibody levels with age. By age 6, the percentage positive for IgG (96.0%) was much higher than for IgA (74.2%). Antibody responses to trachoma antigens declined significantly six months after drug treatment for most age groups. The percentage decrease in IgA response was much greater than for IgG. However, no instances of seroreversion were observed. Data presented here suggest that focusing on concordant antibody responses in children will provide the best serological surveillance strategy for evaluation of trachoma control programs
The stellar metallicity distribution of disc galaxies and bulges in cosmological simulations
By means of high-resolution cosmological hydrodynamical simulations of Milky
Way-like disc galaxies, we conduct an analysis of the associated stellar
metallicity distribution functions (MDFs). After undertaking a kinematic
decomposition of each simulation into spheroid and disc sub-components, we
compare the predicted MDFs to those observed in the solar neighbourhood and the
Galactic bulge. The effects of the star formation density threshold are visible
in the star formation histories, which show a modulation in their behaviour
driven by the threshold. The derived MDFs show median metallicities lower by
0.2-0.3 dex than the MDF observed locally in the disc and in the Galactic
bulge. Possible reasons for this apparent discrepancy include the use of low
stellar yields and/or centrally-concentrated star formation. The dispersions
are larger than the one of the observed MDF; this could be due to simulated
discs being kinematically hotter relative to the Milky Way. The fraction of low
metallicity stars is largely overestimated, visible from the more negatively
skewed MDF with respect to the observational sample. For our fiducial Milky Way
analog, we study the metallicity distribution of the stars born "in situ"
relative to those formed via accretion (from disrupted satellites), and
demonstrate that this low-metallicity tail to the MDF is populated primarily by
accreted stars. Enhanced supernova and stellar radiation energy feedback to the
surrounding interstellar media of these pre-disrupted satellites is suggested
as an important regulator of the MDF skewness.Comment: 20 pages, 14 figures, MNRAS, accepte
Thin disc, Thick Disc and Halo in a Simulated Galaxy
Within a cosmological hydrodynamical simulation, we form a disc galaxy with
sub- components which can be assigned to a thin stellar disc, thick disk, and a
low mass stellar halo via a chemical decomposition. The thin and thick disc
populations so selected are distinct in their ages, kinematics, and
metallicities. Thin disc stars are young (<6.6 Gyr), possess low velocity
dispersion ({\sigma}U,V,W = 41, 31, 25 km/s), high [Fe/H], and low [O/Fe]. The
thick disc stars are old (6.6<age<9.8 Gyrs), lag the thin disc by \sim21 km/s,
possess higher velocity dispersion ({\sigma}U,V,W = 49, 44, 35 km/s),
relatively low [Fe/H] and high [O/Fe]. The halo component comprises less than
4% of stars in the "solar annulus" of the simulation, has low metallicity, a
velocity ellipsoid defined by ({\sigma}U,V,W = 62, 46, 45 km/s) and is formed
primarily in-situ during an early merger epoch. Gas-rich mergers during this
epoch play a major role in fuelling the formation of the old disc stars (the
thick disc). This is consistent with studies which show that cold accretion is
the main source of a disc galaxy's baryons. Our simulation initially forms a
relatively short (scalelength \sim1.7 kpc at z=1) and kinematically hot disc,
primarily from gas accreted during the galaxy's merger epoch. Far from being a
competing formation scenario, migration is crucial for reconciling the short,
hot, discs which form at high redshift in {\Lambda}CDM, with the properties of
the thick disc at z=0. The thick disc, as defined by its abundances maintains
its relatively short scale-length at z = 0 (2.31 kpc) compared with the total
disc scale-length of 2.73 kpc. The inside-out nature of disc growth is
imprinted the evolution of abundances such that the metal poor {\alpha}-young
population has a larger scale-length (4.07 kpc) than the more chemically
evolved metal rich {\alpha}-young population (2.74 kpc).Comment: Submitted to MNRAS. This version after helpful referee comments.
Comments welcome to [email protected]
Spin Dynamics in the Magnetic Chains Arrays of Sr14Cu24O41: a Neutron Inelastic scattering Investigation
Below about 150 K, the spin arrangement in the chain arrays of Sr14Cu24O41 is
shown to develop in two dimensions (2D). Both the correlations and the
dispersion of the observed elementary excitations agree well with a model of
interacting dimers. Along the chains, the intra- and inter-dimer distances are
equal to 2 and about 3 times the distance (c) between neighboring Cu ions.
While the intra-dimer coupling is J about 10 meV, the inter-dimer couplings
along and between the chains are of comparable strenght, J// about -1.1 meV and
Jperp about 1.7 meV, respectively. This remarkable 2D arrangement satisfies the
formal Cu valence of the undoped compound. Our data suggest also that it is
associated with a relative sliding of one chain with respect to the next one,
which, as T decreases, develops in the chain direction. A qualitative analysis
shows that nearest inter-dimer spin correlations are ferromagnetic, which, in
such a 2D structure, could well result from frustration effects.Comment: 4 pages, 5 figures, submitted to Phys.Rev.B, date of receipt 29 June
199
A 4-week, lifestyle-integrated, home-based exercise training programme elicits improvements in physical function and lean mass in older men and women: a pilot study
Background: Developing alternative exercise programmes that can alleviate certain barriers to exercise such as psychological, environmental or socio-economical barriers, but provide similar physiological benefits e.g. increases in muscle mass and strength, is of grave importance. This pilot study aimed to assess the efficacy of an unsupervised, 4-week, whole-body home-based exercise training (HBET) programme, incorporated into daily living activities, on skeletal muscle mass, power and strength.
Methods: Twelve healthy older volunteers (63±3 years, 7 men: 5 women, BMI: 29±1 kg/m²) carried out the 4-week “lifestyle-integrated” HBET of 8 exercises, 3x12 repetitions each, every day. Before and after HBET, a number of physical function tests were carried out: unilateral leg extension 1-RM (one- repetition maximum), MVC (maximal voluntary contraction) leg extension, lower leg muscle power (via Nottingham Power Rig), handgrip strength and SPPBT (short physical performance battery test). A D3-Creatine method was used for assessment of whole-body skeletal muscle mass, and ultrasound was used to measure the quadriceps cross-sectional area (CSA) and vastus lateralis muscle thickness.
Results: Four weeks HBET elicited significant (p<0.05) improvements in leg muscle power (276.7±38.5 vs. 323.4±43.4 W), maximal voluntary contraction (60°: 154.2±18.4 vs. 168.8±15.2 Nm, 90°: 152.1±10.5 vs. 159.1±11.4 Nm) and quadriceps CSA (57.5±5.4 vs. 59.0±5.3 cm2), with a trend for an increase in leg strength (1-RM: 45.7±5.9 vs. 49.6±6.0 kg, P=0.08). This was despite there being no significant differences in whole-body skeletal muscle mass, as assessed via D3-Creatine.
Conclusions: This study demonstrates that increases in multiple aspects of muscle function can be achieved in older adults with just 4-weeks of “lifestyle-integrated” HBET, with a cost-effective means. This training mode may prove to be a beneficial alternative for maintaining and/or improving muscle mass and function in older adults
- …