151 research outputs found
The use of electronic historical dictionary data in corpus design
W Pracowni Historii Języka Polskiego XVII i XVIII w. Instytutu Języka Polskiego Polskiej Akademii Nauk powstają obecnie dwie obszerne bazy danych: Elektroniczny słownik języka polskiego XVII i XVIII w. oraz Elektroniczny korpus tekstów polskich z XVII i XVIII w. (do roku 1772) - ten ostatni we współpracy z Instytutem Podstaw Informatyki PAN. Połączenie tych dwóch zasobów może pomóc zrealizować cele obu projektów. Niniejszy artykuł przedstawia korzyści, jakie mogą odnieść twórcy korpusu, używając danych słownika, m.in. poprzez wykorzystanie informacji gramatycznej z haseł słownika do budowy narzędzi do automatycznej anotacji tekstu.The History of the 17th and 18th c. Polish Language Laboratory, Institute of Polish Language, Polish Academy of Sciences, is in the process of creating two large databases: The Electronic Dictionary of the 17th-18th c. Polish and The Electronic Corpus of the 17th and 18th c. Polish Texts (up to 1772), the latter in cooperation with the Institute of Computer Science, Polish Academy of Sciences. It is expected that combining these two sets of data will help to achieve the objectives established for both database projects. The present article shows the benefits that the Corpus creators can get from the data gathered in the dictionary, with special emphasis put on the use of grammatical information included in the dictionary entries to design tools for automatic text annotation in the Corpus
Ethanolic Extract of Propolis Augments TRAIL-Induced Apoptotic Death in Prostate Cancer Cells
Prostate cancer is a commonly diagnosed cancer in men. The ethanolic extract of propolis (EEP) and its phenolic compounds possess immunomodulatory, chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/APO2L) is a naturally occurring anticancer agent that preferentially induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effects of EEP and phenolic compounds isolated from propolis in combination with TRAIL on two prostate cancer cell lines, hormone-sensitivity LNCaP and hormone-refractory DU145. The cytotoxicity was evaluated by MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC/propidium iodide. The prostate cancer cell lines were proved to be resistant to TRAIL-induced apoptosis. Our study demonstrated that EEP and its components significantly sensitize to TRAIL-induced death in prostate cancer cells. The percentage of the apoptotic cells after cotreatment with 50 μg mL−1 EEP and 100 ng mL−1 TRAIL increased to 74.9 ± 0.7% for LNCaP and 57.4 ± 0.7% for DU145 cells. The strongest cytotoxic effect on LNCaP cells was exhibited by apigenin, kaempferid, galangin and caffeic acid phenylethyl ester (CAPE) in combination with TRAIL (53.51 ± 0.68–66.06 ± 0.62% death cells). In this work, we showed that EEP markedly augmented TRAIL-mediated apoptosis in prostate cancer cells and suggested the significant role of propolis in chemoprevention of prostate cancer
The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA
AbstractRecently, the field of predicting phenotypes of externally visible characteristics (EVCs) from DNA genotypes with the final aim of concentrating police investigations to find persons completely unknown to investigating authorities, also referred to as Forensic DNA Phenotyping (FDP), has started to become established in forensic biology. We previously developed and forensically validated the IrisPlex system for accurate prediction of blue and brown eye colour from DNA, and recently showed that all major hair colour categories are predictable from carefully selected DNA markers. Here, we introduce the newly developed HIrisPlex system, which is capable of simultaneously predicting both hair and eye colour from DNA. HIrisPlex consists of a single multiplex assay targeting 24 eye and hair colour predictive DNA variants including all 6 IrisPlex SNPs, as well as two prediction models, a newly developed model for hair colour categories and shade, and the previously developed IrisPlex model for eye colour. The HIrisPlex assay was designed to cope with low amounts of template DNA, as well as degraded DNA, and preliminary sensitivity testing revealed full DNA profiles down to 63pg input DNA. The power of the HIrisPlex system to predict hair colour was assessed in 1551 individuals from three different parts of Europe showing different hair colour frequencies. Using a 20% subset of individuals, while 80% were used for model building, the individual-based prediction accuracies employing a prediction-guided approach were 69.5% for blond, 78.5% for brown, 80% for red and 87.5% for black hair colour on average. Results from HIrisPlex analysis on worldwide DNA samples imply that HIrisPlex hair colour prediction is reliable independent of bio-geographic ancestry (similar to previous IrisPlex findings for eye colour). We furthermore demonstrate that it is possible to infer with a prediction accuracy of >86% if a brown-eyed, black-haired individual is of non-European (excluding regions nearby Europe) versus European (including nearby regions) bio-geographic origin solely from the strength of HIrisPlex eye and hair colour probabilities, which can provide extra intelligence for future forensic applications. The HIrisPlex system introduced here, including a single multiplex test assay, an interactive tool and prediction guide, and recommendations for reporting final outcomes, represents the first tool for simultaneously establishing categorical eye and hair colour of a person from DNA. The practical forensic application of the HIrisPlex system is expected to benefit cases where other avenues of investigation, including STR profiling, provide no leads on who the unknown crime scene sample donor or the unknown missing person might be
The Use of Electronic Historical Dictionary Data in Corpus Design
The History of the 17th and 18th c. Polish Language Laboratory, Institute of Polish Language, Polish Academy of Sciences, is in the process of creating two large databases: The Electronic Dictionary of the 17th−18th c. Polish and The Electronic Corpus of the 17th and 18th c. Polish Texts (up to 1772), the latter in cooperation with the Institute of Computer Science, Polish Academy of Sciences. It is expected that combining these two sets of data will help to achieve the objectives established for both database projects. The present article shows the benefits that the Corpus creators can get from the data gathered in the dictionary, with special emphasis put on the use of grammatical information included in the dictionary entries to design tools for automatic text annotation in the Corpus
The Use of Electronic Historical Dictionary Data in Corpus Design
The History of the 17th and 18th c. Polish Language Laboratory, Institute of Polish Language, Polish Academy of Sciences, is in the process of creating two large databases: The Electronic Dictionary of the 17th−18th c. Polish and The Electronic Corpus of the 17th and 18th c. Polish Texts (up to 1772), the latter in cooperation with the Institute of Computer Science, Polish Academy of Sciences. It is expected that combining these two sets of data will help to achieve the objectives established for both database projects. The present article shows the benefits that the Corpus creators can get from the data gathered in the dictionary, with special emphasis put on the use of grammatical information included in the dictionary entries to design tools for automatic text annotation in the Corpus
Global skin colour prediction from DNA
Human skin colour is highly heritable and externally visible with relevance in medical, forensic, and anthropological genetics. Although eye and hair colour can already be predicted with high accuracies from small sets of carefully selected DNA markers, knowledge about the genetic predictability of skin colour is limited. Here, we investigate the skin colour predictive value of 77 single-nucleotide polymorphisms (SNPs) from 37 genetic loci previously associated with human pigmentation using 2025 individuals from 31 global populations. We identified a minimal set of 36 highly informative skin colour predictive SNPs and developed a statistical prediction model capable of skin colour prediction on a global scale. Average cross-validated prediction accuracies expressed as area under the receiver-operating characteristic curve (AUC) ± standard deviation were 0.97 ± 0.02 for Light, 0.83 ± 0.11 for Dark, and 0.96 ± 0.03 for Dark-Black. When using a 5-category, this resulted in 0.74 ± 0.05 for Very Pale, 0.72 ± 0.03 for Pale, 0.73 ± 0.03 for Intermediate, 0.87±0.1 for Dark, and 0.97 ± 0.03 for Dark-Black. A comparative analysis in 194 independent samples from 17 populations demonstrated that our model outperformed a previously proposed 10-SNP-classifier approach with AUCs rising from 0.79 to 0.82 for White, comparable at the intermediate level of 0.63 and 0.62, respectively, and a large increase from 0.64 to 0.92 for Black. Overall, this study demonstrates that the chosen DNA markers and prediction model, particularly the 5-category level; allow skin colour predictions within and between continental regions for the first time, which will serve as a valuable resource for future applications in forensic and anthropologic genetics
(704) Interamnia: a transitional object between a dwarf planet and a typical irregular-shaped minor body
Context. With an estimated diameter in the 320–350 km range, (704) Interamnia is the fifth largest main belt asteroid and one of the few bodies that fills the gap in size between the four largest bodies with D > 400 km (Ceres, Vesta, Pallas and Hygiea) and the numerous smaller bodies with diameter ≤200 km. However, despite its large size, little is known about the shape and spin state of Interamnia and, therefore, about its bulk composition and past collisional evolution.
Aims. We aimed to test at what size and mass the shape of a small body departs from a nearly ellipsoidal equilibrium shape (as observed in the case of the four largest asteroids) to an irregular shape as routinely observed in the case of smaller (D ≤ 200 km) bodies.
Methods. We observed Interamnia as part of our ESO VLT/SPHERE large program (ID: 199.C-0074) at thirteen different epochs. In addition, several new optical lightcurves were recorded. These data, along with stellar occultation data from the literature, were fed to the All-Data Asteroid Modeling algorithm to reconstruct the 3D-shape model of Interamnia and to determine its spin state.
Results. Interamnia’s volume-equivalent diameter of 332 ± 6 km implies a bulk density of ρ = 1.98 ± 0.68 g cm−3, which suggests that Interamnia – like Ceres and Hygiea – contains a high fraction of water ice, consistent with the paucity of apparent craters. Our observations reveal a shape that can be well approximated by an ellipsoid, and that is compatible with a fluid hydrostatic equilibrium at the 2σ level.
Conclusions. The rather regular shape of Interamnia implies that the size and mass limit, under which the shapes of minor bodies with a high amount of water ice in the subsurface become irregular, has to be searched among smaller (D ≤ 300 km) less massive (m ≤ 3 × 1019 kg) bodies
- …