247 research outputs found

    Migration promotes plasmid stability under spatially heterogeneous positive selection

    Get PDF
    Bacteria-plasmid associations can be mutualistic or antagonistic depending on the strength of positive selection for plasmid-encoded genes, with contrasting outcomes for plasmid stability. In mutualistic environments, plasmids are swept to high frequency by positive selection, increasing the likelihood of compensatory evolution to ameliorate the plasmid cost, which promotes long-term stability. In antagonistic environments, plasmids are purged by negative selection, reducing the probability of compensatory evolution and driving their extinction. Here we show, using experimental evolution of Pseudomonas fluorescens and the mercury-resistance plasmid, pQBR103, that migration promotes plasmid stability in spatially heterogeneous selection environments. Specifically, migration from mutualistic environments, by increasing both the frequency of the plasmid and the supply of compensatory mutations, stabilized plasmids in antagonistic environments where, without migration, they approached extinction. These data suggest that spatially heterogeneous positive selection, which is common in natural environments, coupled with migration helps to explain the stability of plasmids and the ecologically important genes that they encode

    Ecological conditions determine extinction risk in co-evolving bacteria-phage populations.

    Get PDF
    BACKGROUND: Antagonistic coevolution between bacteria and their viral parasites, phage, drives continual evolution of resistance and infectivity traits through recurrent cycles of adaptation and counter-adaptation. Both partners are vulnerable to extinction through failure of adaptation. Environmental conditions may impose unequal abiotic selection pressures on each partner, destabilising the coevolutionary relationship and increasing the extinction risk of one partner. In this study we explore how the degree of population mixing and resource supply affect coevolution-induced extinction risk by coevolving replicate populations of Pseudomonas fluorescens SBW25 with its associated lytic phage SBW25Ф2 under four treatment regimens incorporating low and high resource availability with mixed or static growth conditions. RESULTS: We observed an increased risk of phage extinction under population mixing, and in low resource conditions. High levels of evolved bacterial resistance promoted phage extinction at low resources under both mixed and static conditions, whereas phage populations could survive when phage susceptible bacterial genotypes rose to high frequency. CONCLUSIONS: These findings demonstrate that phage extinction risk is influenced by multiple abiotic conditions, which together act to destabilise the bacteria-phage coevolutionary relationship. The risk of coevolution-induced extinction is therefore dependent on the ecological context

    Niche Occupation Limits Adaptive Radiation in Experimental Microcosms

    Get PDF
    Adaptive radiations have played a key role in the evolution of biological diversity. The breadth of adaptive radiation in an invading lineage is likely to be influenced by the availability of ecological niches, which will be determined to some extent by the diversity of the resident community. High resident diversity may result in existing ecological niches being filled, inhibiting subsequent adaptive radiation. Conversely, high resident diversity could result in the creation of novel ecological niches or an increase in within niche competition driving niche partitioning, thus promoting subsequent diversification. We tested the role of resident diversity on adaptive radiations in experimental populations of the bacterium Pseudomonas fluorescens that readily diversify into a range of niche specialists when grown in a heterogeneous environment. We allowed an undiversified strain to invade resident communities that varied in the number of niche specialists. The breadth of adaptive radiation attainable by an invading lineage decreased with increasing niche occupation of the resident community. Our results highlight the importance of niche occupation as a constraint on adaptive radiation

    Success of a suicidal defense strategy against infection in a structured habitat

    Get PDF
    Pathogen infection often leads to the expression of virulence and host death when the host-pathogen symbiosis seems more beneficial for the pathogen. Previously proposed explanations have focused on the pathogen's side. In this work, we tested a hypothesis focused on the host strategy. If a member of a host population dies immediately upon infection aborting pathogen reproduction, it can protect the host population from secondary infections. We tested this "Suicidal Defense Against Infection" (SDAI) hypothesis by developing an experimental infection system that involves a huge number of bacteria as hosts and their virus as pathogen, which is linked to modeling and simulation. Our experiments and simulations demonstrate that a population with SDAI strategy is successful in the presence of spatial structure but fails in its absence. The infection results in emergence of pathogen mutants not inducing the host suicide in addition to host mutants resistant to the pathogen

    Epistatic Interactions Alter Dynamics of Multilocus Gene-for-Gene Coevolution

    Get PDF
    Fitness costs associated with resistance or virulence genes are thought to play a key role in determining the dynamics of gene-for-gene (GFG) host-parasite coevolution. However, the nature of interactions between fitness effects of multiple resistance or virulence genes (epistasis) has received less attention. To examine effects of the functional form of epistasis on the dynamics of GFG host-parasite coevolution we modified a classic multilocus GFG model framework. We show that the type of epistasis between virulence genes largely determines coevolutionary dynamics, and that coevolutionary fluctuations are more likely with acceleratingly costly (negative) than with linear or deceleratingly costly (positive) epistasis. Our results demonstrate that the specific forms of interaction between multiple resistance or virulence genes are a crucial determinant of host-parasite coevolutionary dynamics

    Heterogeneous Adaptive Trajectories of Small Populations on Complex Fitness Landscapes

    Get PDF
    Background Small populations are thought to be adaptively handicapped, not only because they suffer more from deleterious mutations but also because they have limited access to new beneficial mutations, particularly those conferring large benefits. Methodology/Principal Findings Here, we test this widely held conjecture using both simulations and experiments with small and large bacterial populations evolving in either a simple or a complex nutrient environment. Consistent with expectations, we find that small populations are adaptively constrained in the simple environment; however, in the complex environment small populations not only follow more heterogeneous adaptive trajectories, but can also attain higher fitness than the large populations. Large populations are constrained to near deterministic fixation of rare large-benefit mutations. While such determinism speeds adaptation on the smooth adaptive landscape represented by the simple environment, it can limit the ability of large populations from effectively exploring the underlying topography of rugged adaptive landscapes characterized by complex environments. Conclusions Our results show that adaptive constraints often faced by small populations can be circumvented during evolution on rugged adaptive landscapes

    Cheaters allow cooperators to prosper

    Get PDF
    Cooperation based on the production of costly common goods is observed throughout nature. This is puzzling, as cooperation is vulnerable to exploitation by defectors which enjoy a fitness advantage by consuming the common good without contributing fairly. Depletion of the common good can lead to population collapse and the destruction of cooperation. However, population collapse implies small population size, which, in a structured population, is known to favor cooperation. This happens because small population size increases variability in cooperator frequency across different locations. Since individuals in cooperator-dominated locations (which are most likely cooperators) will grow more than those in defector-dominated locations (which are most likely defectors), cooperators can outgrow defectors globally despite defectors outgrowing cooperators in each location. This raises the possibility that defectors can lead to conditions that sometimes rescue cooperation from defector-induced destruction. We demonstrate multiple mechanisms through which this can occur, using an individual-based approach to model stochastic birth, death, migration, and mutation events. First, during defector-induced population collapse, defectors occasionally go extinct before cooperators by chance, which allows cooperators to grow. Second, empty locations, either preexisting or created by defector-induced population extinction, can favor cooperation because they allow cooperator but not defector migrants to grow. These factors lead to the counterintuitive result that the initial presence of defectors sometimes allows better survival of cooperation compared to when defectors are initially absent. Finally, we find that resource limitation, inducible by defectors, can select for mutations adaptive to resource limitation. When these mutations are initially present at low levels or continuously generated at a moderate rate, they can favor cooperation by further reducing local population size. We predict that in a structured population, small population sizes precipitated by defectors provide a "built-in" mechanism for the persistence of cooperation
    corecore