3,402 research outputs found

    Cortisol levels are positively associated with pup-feeding rates in male meerkats

    Get PDF
    In societies of cooperative vertebrates, individual differences in contributions to offspring care are commonly substantial. Recent attempts to explain the causes of this variation have focused on correlations between contributions to care and the protein hormone prolactin, or the steroid hormone testosterone. However, such studies have seldom considered the importance of other hormones or controlled for non-hormonal factors that are correlative with both individual hormone levels and contributions to care. Using multivariate statistics, we show that hormone levels explain significant variation in contributions to pup-feeding by male meerkats, even after controlling for non-hormonal effects. However, long-term contributions to pup provisioning were significantly and positively correlated with plasma levels of cortisol rather than prolactin, while plasma levels of testosterone were not related to individual patterns of pup-feeding. Furthermore, a playback experiment that used pup begging calls to increase the feeding rates of male helpers gave rise to parallel increases in plasma cortisol levels, whilst prolactin and testosterone levels remained unchanged. Our findings confirm that hormones can explain significant amounts of variation in contributions to offspring feeding, and that cortisol, not prolactin, is the hormone most strongly associated with pup-feeding in cooperative male meerkats

    X-Ray Astrophysics: Constraining Thermal Conductivity in Intracluster Gas in Clusters of Galaxies and Placing Limits on Progenitor Systems of Type Ia Supernovae

    Get PDF
    X-ray astrophysics provides a great many opportunities to study astronomical structures with large energies or high temperatures. This dissertation will describe two such applications: the use of Swift X-ray Telescope (XRT) data to analyze the interaction between a supernova shock and the circumstellar medium, and the use of a straightforward computer simulation to model the dynamics of intracluster gas in clusters of galaxies and constrain the thermal conduction coefficient. Stars emit stellar wind at varying rates throughout their lifetimes. This wind populates the circumstellar medium (CSM) with gas. When the supernova explodes, the shock wave propogates outward through this CSM and heats it to X-ray emitting temperatures. By analyzing X-ray observations of the immediate post-supernova environment, we are able to determine whether any significant CSM is present. By stacking a large number of Swift observations of SNe Ia, we increase the sensitivity. We find no X-rays, with an upper limit of 1.7 x 10^38 erg s^-1 and a 3 sigma upper limit on the mass loss rate of progenitor systems 1.1 x 10^-6 solar masses per year x (v_w)/(10 km s^-1). This low upper limit precludes a massive progenitor as the binary companion in the supernova progenitor system, unless that star is in Roche lobe overflow. The hot Intracluster Medium (ICM) is composed of tenuous gas which is gravitationally-bound to the cluster of galaxies. This gas is not initially of uniform temperature, and experiences thermal conduction while maintaining hydrostatic equilibrium. However, magnetic field lines present in the ionized gas inhibit the full thermal conduction. In this dissertation, we present the results of a new one-dimensional simulation that models this conduction (and includes cooling while maintaining hydrostatic equilibrium). By comparing the results of this model with the observed gas temperature profiles and recent accurate constraints on the scatter of the gas fraction, we are able to constrain the thermal conductivity. Our results suggest that conduction factors are not higher than 10% of full Spitzer conduction for hot, relaxed clusters

    Acoustic Emission Technology for High Power Microwave Radar Tubes

    Get PDF
    Microwave tubes used in high-power radar and communications systems are expensive and have an operating life of a few thousand hours. When one fails, it is generally impossible to determine the sequence of events that contributed to its failure. Previous investigators have designed microprocessor-based systems with as many as 11 sensors to monitor tube performance, provide tube protection, and record a comprehensive tube failure history. These systems are limited by the small amount of time available during the tube’s interpulse period for data buffering and fault analysis. They work well if the microwave tube is operated with 200 or fewer pulses per second. However, many tubes are operated at up to 1000 pulses per second. In this effort, an alternative nondestructive testing technique using acoustic emission (AE) was used for in-situ monitoring of normal and abnormal performance of radar tubes, including a magnetron, a klystron, and a traveling wave tube amplifier. This technique captures changes in radio frequency (RF) output pulses due to irregular operation and it is a real-time instantaneous in-situ indicator of the performance of microwave radar tubes. It also offers the possibility of developing built-in prognostic capabilities within the radar system to provide advanced warning of a system malfunction. Understanding the sequence of events leading to a tube failure allows for better maintenance, extends the operating life of the system, and results in significant cost avoidance

    Automated Classification of Microwave Transmitter Failures Using Virtual Sensors

    Get PDF
    Each year, nearly $100 M is spent replacing high-power microwave tubes in the fleet. In many cases (estimated at over 25%), tubes that are operating perfectly are inadvertently replaced because there are insufficient in-situ monitoring equipment available to diagnose specific problems within the system. High-power microwave vacuum tubes used in radar or communications systems have minimal condition-based maintenance capability and no means to identify specific component failures. This chapter presents the results from a system that uses cathode current and acoustic emission sensors combined as a virtual sensor to locate and classify microwave transmitter failures. Data will be shown which differentiate the failure mode from subsystems on a radar klystron and from a communications system magnetron. The use of the integrated condition assessment system (ICAS) to acquire and track virtual sensor data will also be described. These results offer promise of a low-cost, nonintrusive system to monitor microwave transmitters, which correctly identifies component failures avoiding incorrect replacement of high-value klystrons, magnetrons, or traveling wave tubes. This advanced technique also offers the possibility of developing built-in prognostic capabilities within the radar system to provide advanced warning of a system malfunction

    A Simple Explanation for DAMA with Moderate Channeling

    Full text link
    We consider the possibility that the DAMA signal arises from channeled events in simple models where the dark matter interaction with nuclei is suppressed at small momenta. As with the standard WIMP, these models have two parameters (the dark matter mass and the size of the cross-section), without the need to introduce an additional energy threshold type of parameter. We find that they can be consistent with channeling fractions as low as about ~ 15%, so long as at least ~70% of the nuclear recoil energy for channeled events is deposited electronically. Given that there are reasons not to expect very large channeling fractions, these scenarios make the channeling explanation of DAMA much more compelling.Comment: 6 pages, 2 figure

    Alloparental behaviour and long-term costs of mothers tolerating other members of the group in a plurally breeding mammal

    No full text
    Cooperative-breeding studies tend to focus on a few alloparental behaviours in highly cooperative species exhibiting high reproductive skew and the associated short-term, but less frequently long-term, fitness costs. We analysed a suite of alloparental behaviours (assessed via filming) in a kin-structured, high-density population of plurally breeding European badgers, Meles meles, which are not highly cooperative. Group members, other than mothers, performed alloparental behaviour; however, this was not correlated with their relatedness to within-group young. Furthermore, mothers babysat, allogroomed cubs without reciprocation, and allomarked cubs more than other members of the group (controlling for observation time). For welfare reasons, we could not individually mark cubs; however, the number observed pre-independence never exceeded that trapped. All 24 trapped cubs, in three filmed groups, were assigned both parents using 22 microsatellites. Mothers may breed cooperatively, as the time they babysat their assigned, or a larger, litter size did not differ. Furthermore, two mothers probably allonursed, as they suckled more cubs than their assigned litter size. An 18-year genetic pedigree, however, detected no short-term (litter size; maternal survival to the following year) or long-term (offspring breeding probability; offspring lifetime breeding success) fitness benefits with more within-group mothers or other members of the group. Rather, the number of other members of the group (excluding mothers) correlated negatively with long-term fitness. Mothers may tolerate other members of the group, as nonbreeders undertook more digging. Our study highlights that alloparental care varies on a continuum from that seen in this high-density badger population, where alloparenting behaviour is minimal, through to species where alloparental care is common and provides fitness benefits. (C) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved

    Fitness benefits of prolonged post-reproductive lifespan in women

    Get PDF
    Most animals reproduce until they die, but in humans, females can survive long after ceasing reproduction. In theory, a prolonged post-reproductive lifespan will evolve when females can gain greater fitness by increasing the success of their offspring than by continuing to breed themselves. Although reproductive success is known to decline in old age, it is unknown whether women gain fitness by prolonging lifespan post-reproduction. Using complete multi-generational demographic records, we show that women with a prolonged post-reproductive lifespan have more grandchildren, and hence greater fitness, in pre-modern populations of both Finns and Canadians. This fitness benefit arises because post-reproductive mothers enhance the lifetime reproductive success of their offspring by allowing them to breed earlier, more frequently and more successfully. Finally, the fitness benefits of prolonged lifespan diminish as the reproductive output of offspring declines. This suggests that in female humans, selection for deferred ageing should wane when one's own offspring become post-reproductive and, correspondingly, we show that rates of female mortality accelerate as their offspring terminate reproduction

    Beyond aggression: Androgen-receptor blockade modulates social interaction in wild meerkats

    Get PDF
    In male vertebrates, androgens are inextricably linked to reproduction, social dominance, and aggression, often at the cost of paternal investment or prosociality. Testosterone is invoked to explain rank-related reproductive differences, but its role within a status class, particularly among subordinates, is underappreciated. Recent evidence, especially for monogamous and cooperatively breeding species, suggests broader androgenic mediation of adult social interaction. We explored the actions of androgens in subordinate, male members of a cooperatively breeding species, the meerkat (Suricata suricatta). Although male meerkats show no rank-related testosterone differences, subordinate helpers rarely reproduce. We blocked androgen receptors, in the field, by treating subordinate males with the antiandrogen, flutamide. We monitored androgen concentrations (via baseline serum and time-sequential fecal sampling) and recorded behavior within their groups (via focal observation). Relative to controls, flutamide-treated animals initiated less and received more high-intensity aggression (biting, threatening, feeding competition), engaged in more prosocial behavior (social sniffing, grooming, huddling), and less frequently initiated play or assumed a ‘dominant’ role during play, revealing significant androgenic effects across a broad range of social behavior. By contrast, guarding or vigilance and measures of olfactory and vocal communication in subordinate males appeared unaffected by flutamide treatment. Thus, androgens in male meerkat helpers are aligned with the traditional trade-off between promoting reproductive and aggressive behavior at a cost to affiliation. Our findings, based on rare endocrine manipulation in wild mammals, show a more pervasive role for androgens in adult social behavior than is often recognized, with possible relevance for understanding tradeoffs in cooperative systems

    Interpreting the chronology of the cist

    Get PDF
    The wide range of organic material preserved in the cist provided the opportunity for determining a robust chronology for the cremation and its associated grave goods. In addition, the peat mound into which the cist had been placed had the potential to provide an environmental setting and context for the burial
    corecore