77 research outputs found

    Control techniques for thermal-aware energy-efficient real time multiprocessor scheduling

    Get PDF
    La utilización de microprocesadores multinúcleo no sólo es atractiva para la industria sino que en muchos ámbitos es la única opción. La planificación tiempo real sobre estas plataformas es mucho más compleja que sobre monoprocesadores y en general empeoran el problema de sobre-diseño, llevando a la utilización de muchos más procesadores /núcleos de los necesarios. Se han propuesto algoritmos basados en planificación fluida que optimizan la utilización de los procesadores, pero hasta el momento presentan en general inconvenientes que los alejan de su aplicación práctica, no siendo el menor el elevado número de cambios de contexto y migraciones.Esta tesis parte de la hipótesis de que es posible diseñar algoritmos basados en planificación fluida, que optimizan la utilización de los procesadores, cumpliendo restricciones temporales, térmicas y energéticas, con un bajo número de cambios de contexto y migraciones, y compatibles tanto con la generación fuera de línea de ejecutivos cíclicos atractivos para la industria, como de planificadores que integran técnicas de control en tiempo de ejecución que permiten la gestión eficiente tanto de tareas aperiódicas como de desviaciones paramétricas o pequeñas perturbaciones.A este respecto, esta tesis contribuye con varias soluciones. En primer lugar, mejora una metodología de modelo que representa todas las dimensiones del problema bajo un único formalismo (Redes de Petri Continuas Temporizadas). En segundo lugar, propone un método de generación de un ejecutivo cíclico, calculado en ciclos de procesador, para un conjunto de tareas tiempo real duro sobre multiprocesadores que optimiza la utilización de los núcleos de procesamiento respetando también restricciones térmicas y de energía, sobre la base de una planificación fluida. Considerar la sobrecarga derivada del número de cambios de contexto y migraciones en un ejecutivo cíclico plantea un dilema de causalidad: el número de cambios de contexto (y en consecuencia su sobrecarga) no se conoce hasta generar el ejecutivo cíclico, pero dicho número no se puede minimizar hasta que se ha calculado. La tesis propone una solución a este dilema mediante un método iterativo de convergencia demostrada que logra minimizar la sobrecarga mencionada.En definitiva, la tesis consigue explotar la idea de planificación fluida para maximizar la utilización (donde maximizar la utilización es un gran problema en la industria) generando un sencillo ejecutivo cíclico de mínima sobrecarga (ya que la sobrecarga implica un gran problema de los planificadores basados en planificación fluida).Finalmente, se propone un método para utilizar las referencias de la planificación fuera de línea establecida en el ejecutivo cíclico para su seguimiento por parte de un controlador de frecuencia en línea, de modo que se pueden afrontar pequeñas perturbaciones y variaciones paramétricas, integrando la gestión de tareas aperiódicas (tiempo real blando) mientras se asegura la integridad de la ejecución del conjunto de tiempo real duro.Estas aportaciones constituyen una novedad en el campo, refrendada por las publicaciones derivadas de este trabajo de tesis.<br /

    Energy-efficient thermal-aware multiprocessor scheduling for real-time tasks using TCPNs

    Get PDF
    We present an energy-effcient thermal-aware real-time global scheduler for a set of hard real-time (HRT) tasks running on a multiprocessor system. This global scheduler fulfills the thermal and temporal constraints by handling two independent variables, the task allocation time and the selection of clock frequency. To achieve its goal, the proposed scheduler is split into two stages. An off-line stage, based on a deadline partitioning scheme, computes the cycles that the HRT tasks must run per deadline interval at the minimum clock frequency to save energy while honoring the temporal and thermal constraints, and computes the maximum frequency at which the system can run below the maximum temperature. Then, an on-line, event-driven stage performs global task allocation applying a Fixed-Priority Zero-Laxity policy, reducing the overhead of quantum-based or interval-based global schedulers. The on-line stage embodies an adaptive scheduler that accepts or rejects soft RT aperiodic tasks throttling CPU frequency to the upper lowest available one to minimize power consumption while meeting time and thermal constraints. This approach leverages the best of two worlds: the off-line stage computes an ideal discrete HRT multiprocessor schedule, while the on-line stage manage soft real-time aperiodic tasks with minimum power consumption and maximum CPU utilization

    Real time scheduler for multiprocessor systems based on continuous control using timed continuous petri nets

    Get PDF
    This work exploits Timed Continuous Petri Nets (TCPN) to design and test a novel energy-efficient thermal-aware real-time global scheduler for a hard real-time (HRT) task set running on a multiprocessor system. The TCPN model encompasses both the system and task set, including thermal features. In previous work we calculated the share of each task that must be executed per time interval by solving off-line an Integer Programming Problem Problem (ILP). A subsequent on-line stage allocated jobs to processors. We now perform the allocation off-line too, including an allocation controller and an execution controller in the on-line stage. This adds robustness by ensuring that actual task allocation and execution honor the safe schedule provided off-line. Last, the on-line controllers allow the design of an improved soft RT aperiodic task manager. Also, ee experimentally prove that our scheduler yields fewer context switches and migrations on the HRT task set than RUN, a reference algorith

    Low-velocity transient-field technique with radioactive ion beams: G factor of the first excited 2 + state in 72Zn

    Get PDF
    A. Illana et al. ; 11 pags. ; 10 figs. ; 3 tabs. ; PACS number(s): 23.20.En, 21.10.Ky, 21.60.Cs, 27.50.+eThe g factor of the first excited 2+ state in 72Zn has been measured using the transient-field (TF) technique in combination with Coulomb excitation in inverse kinematics. This experiment presents only the third successful application of the TF method to a short-lived radioactive beam in 10 y, highlighting the intricacies of applying this technique to present and future isotope separator on-line facilities. The significance of the experimental result, g(21+)=+0.47(14), for establishing the structure of the Zn isotopes near N=40 is discussed on the basis of shell-model and beyond-mean-field calculations, the latter accounting for the triaxial degree of freedom, configuration mixing, and particle number and angular momentum projections. © 2014 American Physical Society.This work has been supported by the Spanish Ministerio de Ciencia e Innovacion under Contracts No. FPA2009-13377- ´ C02 and No. FPA2011-29854-C04 and the Spanish Project MEC Consolider-Ingenio 2010, Project No. CDS2007-00042.Peer Reviewe

    Cross-Recognition of SARS-CoV-2 B-Cell Epitopes with Other Betacoronavirus Nucleoproteins

    Get PDF
    The B and T lymphocytes of the adaptive immune system are important for the control of most viral infections, including COVID-19. Identification of epitopes recognized by these cells is fundamental for understanding how the immune system detects and removes pathogens, and for antiviral vaccine design. Intriguingly, several cross-reactive T lymphocyte epitopes from SARS-CoV-2 with other betacoronaviruses responsible for the common cold have been identified. In addition, antibodies that cross-recognize the spike protein, but not the nucleoprotein (N protein), from different betacoronavirus have also been reported. Using a consensus of eight bioinformatic methods for predicting B-cell epitopes and the collection of experimentally detected epitopes for SARS-CoV and SARS-CoV-2, we identified four surface-exposed, conserved, and hypothetical antigenic regions that are exclusive of the N protein. These regions were analyzed using ELISA assays with two cohorts: SARS-CoV-2 infected patients and pre-COVID-19 samples. Here we describe four epitopes from SARS-CoV-2 N protein that are recognized by the humoral response from multiple individuals infected with COVID-19, and are conserved in other human coronaviruses. Three of these linear surface-exposed sequences and their peptide homologs in SARS-CoV-2 and HCoV-OC43 were also recognized by antibodies from pre-COVID-19 serum samples, indicating cross-reactivity of antibodies against coronavirus N proteins. Different conserved human coronaviruses (HCoVs) cross-reactive B epitopes against SARS-CoV-2 N protein are detected in a significant fraction of individuals not exposed to this pandemic virus. These results have potential clinical implications.This research was supported by grants from COV20_00679 (MPY 222-20), to M.J.M., MPY 509/19 to A.J.M.-G. and MPY 388/18 to D.L. of “Acción Estratégica en Salud” from the ISCIII.S

    Beta-delayed proton emission from <sup>21</sup>Mg

    Get PDF
    16 pags.; 9 figs.; 6 tabs.© 2015, SIF, Springer-Verlag Berlin Heidelberg. Beta-delayed proton emission from 21Mg has been measured at ISOLDE, CERN, with a detection setup consisting of two charged-particle telescopes surrounding the decay point. Altogether 27 βp branches were measured with center-of-mass energies between 0.4–7.2 MeV. Seven new βp branches were observed. Beta-delayed protons were used to determine the half-life of 21Mg as 118.6 ± 0.5 ms. From a line shape fit of the βp branches we extract the widths, spins, and parities of the resonances of 21Na. An improved interpretation of the decay scheme in accordance with the results obtained in reaction studies is presented.This work has been supported by the European Commision within the Seventh Framework Programme “European Nuclear Science and Applications Research”, contract no. 262010 (ENSAR), and by the Spanish research agency under number FPA2012-32443.Peer Reviewe

    Qualitative Analysis by Experts of the Essential Elements of the Nursing Practice Environments Proposed by the TOP10 Questionnaire of Assessment of Environments in Primary Health Care

    Get PDF
    Background: A short TOP10 scale based on the Practice Environment Scale-Nursing Work Index questionnaire measures the characteristics of nursing work environments. Positive environments result in better quality care and health outcomes. Objective: To identify a small number of core elements that would facilitate more effective interventions by nurse managers, and compare them with the essential elements proposed by the TOP10. Method: Qualitative research by a nominal group of eight experts. The content analysis was combined with descriptive data. Results: Ten most important items were selected and analyzed by the expert group. A high level of consensus in four items (2, 15, 20, 31) and an acceptable consensus in five items was reached (6, 11, 14, 18, 26). The tenth item in the top ten was selected from content analysis (19). The expert group agreed 90% with the elements selected as essential to the TOP10. Conclusion: The expert group achieved a high level of consensus that supports 90% of the essential elements of primary care settings proposed by the TOP10 questionnaire. Organizational changes implemented by managers to improve working environments must be prioritized following our results, so care delivery and health outcomes can be further improved

    Proton Radiographs Using Position-Sensitive Silicon Detectors and High-Resolution Scintillators

    Get PDF
    7 pags., 11 figs., 1 tab.Proton therapy is a cancer treatment technique currently in growth since it offers advantages with respect to conventional X-ray and ¿ -ray radiotherapy. In particular, better control of the dose deposition allowing to reach higher conformity in the treatments causing less secondary effects. However, in order to take full advantage of its potential, improvements in treatment planning and dose verification are required. A new prototype of proton computed tomography scanner is proposed to design more accurate and precise treatment plans for proton therapy. Our prototype is formed by double-sided silicon strip detectors and scintillators of LaBr3(Ce) with high energy resolution and fast response. Here, the results obtained from an experiment performed using a 100-MeV proton beam are presented. Proton radiographs of polymethyl methacrylate (PMMA) samples of 50-mm thickness with spatial patterns in aluminum were taken. Their properties were studied, including reproduction of the dimensions, spatial resolution, and sensitivity to different materials. Structures of up to 2 mm are well resolved and the sensitivity of the system was enough to distinguish the thicknesses of 10 mm of aluminum or PMMA. The spatial resolution of the images was 0.3 line pairs per mm (MTF-10%). This constitutes the first step to validate the device as a proton radiography scanner.This work has been supported by the PRONTO-CM B2017/BMD-3888 project funded by Comunidad de Madrid (Spain). The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 654002 (ENSAR2) and grant agreement No [730983] (INSPIRE). This work has been partly supported by the Spanish Funding Agency for Research (AEI) through the PID2019-104390GBI00 and PID2019-104714GB-C21 projects. A.N. Nerio acknowledges the fundings from the Erasmus Mundus Joint Master Degree on Nuclear Physics co-funded by the Erasmus+Programme of the European Union

    Effects of mobile learning in medical education: a counterfactual vvaluation

    Get PDF
    The aim of this research is to contribute to the general system education providing new insights and resources. This study performs a quasi-experimental study at University of Salamanca with 30 students to compare results between using an anatomic app for learning and the formal traditional method conducted by a teacher. The findings of the investigation suggest that the performance of learners using mobile apps is statistical better than the students using the traditional method. However, mobile devices should be considered as an additional tool to complement the teachers’ explanation and it is necessary to overcome different barriers and challenges to adopt these pedagogical methods at University
    corecore