Energy-efficient thermal-aware multiprocessor scheduling for real-time tasks using TCPNs

Abstract

We present an energy-effcient thermal-aware real-time global scheduler for a set of hard real-time (HRT) tasks running on a multiprocessor system. This global scheduler fulfills the thermal and temporal constraints by handling two independent variables, the task allocation time and the selection of clock frequency. To achieve its goal, the proposed scheduler is split into two stages. An off-line stage, based on a deadline partitioning scheme, computes the cycles that the HRT tasks must run per deadline interval at the minimum clock frequency to save energy while honoring the temporal and thermal constraints, and computes the maximum frequency at which the system can run below the maximum temperature. Then, an on-line, event-driven stage performs global task allocation applying a Fixed-Priority Zero-Laxity policy, reducing the overhead of quantum-based or interval-based global schedulers. The on-line stage embodies an adaptive scheduler that accepts or rejects soft RT aperiodic tasks throttling CPU frequency to the upper lowest available one to minimize power consumption while meeting time and thermal constraints. This approach leverages the best of two worlds: the off-line stage computes an ideal discrete HRT multiprocessor schedule, while the on-line stage manage soft real-time aperiodic tasks with minimum power consumption and maximum CPU utilization

    Similar works