2,126 research outputs found

    Protein kinase C theta is required for efficient induction of IL-10-secreting T cells

    Get PDF
    <div><p>Secretion of interleukin-10 (IL-10) by CD4<sup>+</sup> T cells is an essential immunoregulatory mechanism. The work presented here assesses the role of the signaling molecule protein kinase C theta (PKCθ) in the induction of IL-10 expression in CD4<sup>+</sup> T cells. Using wildtype and PKCθ-deficient Tg4 T cell receptor transgenic mice, we implemented a well-described protocol of repeated doses of myelin basic protein (MBP)Ac1-9[4Y] antigen to induce Tr1-like IL-10<sup>+</sup> T cells. We find that PKCθ is required for the efficient induction of IL-10 following antigen administration. Both serum concentrations of IL-10 and the proportion of IL-10<sup>+</sup> T cells were reduced in PKCθ-deficient mice relative to wildtype mice following [4Y] treatment. We further characterized the T cells of [4Y] treated PKCθ-deficient Tg4 mice and found reduced expression of the transcription factors cMaf, Nfil3 and FoxP3 and the surface receptors PD-1 and Tim3, all of which have been associated with the differentiation or function of IL-10<sup>+</sup> T cells. Finally, we demonstrated that, unlike [4Y] treated wildtype Tg4 T cells, cells from PKCθ-deficient mice were unable to suppress the priming of naïve T cells <i>in vitro</i> and <i>in vivo</i>. In summary, we present data demonstrating a role for PKCθ in the induction of suppressive, IL-10-secreting T cells induced in TCR-transgenic mice following chronic antigen administration. This should be considered when contemplating PKCθ as a suitable drug target for inducing immune suppression and graft tolerance.</p></div

    Stat2 loss disrupts damage signalling and is protective in acute pancreatitis

    Get PDF
    The severity of sterile inflammation, as seen in acute pancreatitis, is determined by damage-sensing receptors, signalling cascades and cytokine production. Stat2 is a type I interferon signalling mediator that also has interferon-independent roles in murine lipopolysaccharide-induced NF-κB-mediated sepsis. However, its role in sterile inflammation is unknown. We hypothesised that Stat2 determines the severity of non-infective inflammation in the pancreas. Wild type (WT) and Stat2-/- mice were injected intraperitoneally with caerulein or L-arginine. Specific cytokine-blocking antibodies were used in some experiments. Pancreata and blood were harvested 1 h and 24 h after the final dose of caerulein and up to 96 h post L-arginine. Whole-tissue phosphoproteomic changes were assessed using label-free mass spectrometry. Tissue-specific Stat2 effects were studied in WT/Stat2-/- bone-marrow chimera and using Cre-lox recombination to delete Stat2 in pancreatic and duodenal homeobox 1(Pdx1)-expressing cells. Stat2-/- mice were protected from caerulein- and L-arginine-induced pancreatitis. Protection was independent of type I interferon signalling. Stat2-/- mice had lower cytokine levels including TNFα and IL-10 and reduced NF-kB nuclear localisation in pancreatic tissue compared to WT. Inhibition of TNFα improved (inhibition of IL-10 worsened) caerulein-induced pancreatitis in WT but not Stat2-/- mice. Phosphoproteomics showed down-regulation of mitogen-activated protein kinase (MAPK) mediators but accumulation of Ser412-phosphorylated Tak1. Stat2 deletion in Pdx1-expressing acinar cells (Stat2flox/Pdx1-cre ) reduced pancreatic TNFα expression, but not histological injury or serum amylase. WT/Stat2-/- bone-marrow chimera mice were protected from pancreatitis irrespective of host or recipient genotype. Stat2 loss results in disrupted signalling in pancreatitis, upstream of NF-κB in non-acinar and/or bone marrow derived cells. This article is protected by copyright. All rights reserved

    A statistical network analysis of the HIV/AIDS epidemics in Cuba

    Get PDF
    The Cuban contact-tracing detection system set up in 1986 allowed the reconstruction and analysis of the sexual network underlying the epidemic (5,389 vertices and 4,073 edges, giant component of 2,386 nodes and 3,168 edges), shedding light onto the spread of HIV and the role of contact-tracing. Clustering based on modularity optimization provides a better visualization and understanding of the network, in combination with the study of covariates. The graph has a globally low but heterogeneous density, with clusters of high intraconnectivity but low interconnectivity. Though descriptive, our results pave the way for incorporating structure when studying stochastic SIR epidemics spreading on social networks

    Attenuation of infectious bronchitis virus in eggs results in different patterns of genomic variation across multiple replicates

    Get PDF
    The gammacoronavirus infectious bronchitis virus (IBV) causes an acute, highly contagious respiratory disease of poultry. Live attenuated vaccines are traditionally generated by serial passage of a virulent strain in embryonated chicken eggs, however the molecular mechanism of attenuation is unknown. The virulent lab adapted strain of IBV, M41-CK, was egg-passaged over one hundred times in four parallel independent replicates. All four final egg-passaged viruses were attenuated and exhibited similar growth phenotypes in adult chicken kidney cells and tracheal organ cultures. The virus populations were sequenced by 454 pyrosequencing at the end of passaging, showing that overall sequence diversity in the IBV population increased but the four replicates only had between 11 and 17 consensus-level single nucleotide polymorphisms (SNPs). Although hotspots of variation were identified in spike and nucleocapsid structural proteins as well as the 3' untranslated region, each attenuated virus possessed a different pattern of genomic variation. Overall, only a small number of consensus-level SNPs were acquired during egg passage, leaving a potentially short route back to virulence. These results highlight the unpredictable nature of attenuation by serial egg passage and the need to develop mechanisms to rationally attenuate IBV for the next generation of effective vaccines. Infectious Bronchitis remains a major problem in the global poultry industry, despite the existence of many different vaccines. IBV vaccines are currently developed by serial passage of a virulent strain on embryonated hen's eggs until attenuation, however little is known about the evolution of the viral population during the process of attenuation. High throughput sequencing of four replicates of a serially egg-passaged IBV revealed a different pattern of genomic variation in each attenuated replicate and few consensus-level SNPs. This raises concerns that only a small number of genomic mutations are required to revert to a virulent phenotype, which may result in vaccine breakdown in the field. The observed hotspots of variation in the attenuated viruses has the potential to be used in the rational attenuation of virulent IBV for next generation vaccine design

    Extinction times in the subcritical stochastic SIS logistic epidemic

    Get PDF
    Many real epidemics of an infectious disease are not straightforwardly super- or sub-critical, and the understanding of epidemic models that exhibit such complexity has been identified as a priority for theoretical work. We provide insights into the near-critical regime by considering the stochastic SIS logistic epidemic, a well-known birth-and-death chain used to model the spread of an epidemic within a population of a given size NN. We study the behaviour of the process as the population size NN tends to infinity. Our results cover the entire subcritical regime, including the "barely subcritical" regime, where the recovery rate exceeds the infection rate by an amount that tends to 0 as NN \to \infty but more slowly than N1/2N^{-1/2}. We derive precise asymptotics for the distribution of the extinction time and the total number of cases throughout the subcritical regime, give a detailed description of the course of the epidemic, and compare to numerical results for a range of parameter values. We hypothesise that features of the course of the epidemic will be seen in a wide class of other epidemic models, and we use real data to provide some tentative and preliminary support for this theory.Comment: Revised; 34 pages; 6 figure

    Use of low-dose oral theophylline as an adjunct to inhaled corticosteroids in preventing exacerbations of chronic obstructive pulmonary disease: study protocol for a randomised controlled trial.

    Get PDF
    BACKGROUND: Chronic obstructive pulmonary disease (COPD) is associated with high morbidity, mortality, and health-care costs. An incomplete response to the anti-inflammatory effects of inhaled corticosteroids is present in COPD. Preclinical work indicates that 'low dose' theophylline improves steroid responsiveness. The Theophylline With Inhaled Corticosteroids (TWICS) trial investigates whether the addition of 'low dose' theophylline to inhaled corticosteroids has clinical and cost-effective benefits in COPD. METHOD/DESIGN: TWICS is a randomised double-blind placebo-controlled trial conducted in primary and secondary care sites in the UK. The inclusion criteria are the following: an established predominant respiratory diagnosis of COPD (post-bronchodilator forced expiratory volume in first second/forced vital capacity [FEV1/FVC] of less than 0.7), age of at least 40 years, smoking history of at least 10 pack-years, current inhaled corticosteroid use, and history of at least two exacerbations requiring treatment with antibiotics or oral corticosteroids in the previous year. A computerised randomisation system will stratify 1424 participants by region and recruitment setting (primary and secondary) and then randomly assign with equal probability to intervention or control arms. Participants will receive either 'low dose' theophylline (Uniphyllin MR 200 mg tablets) or placebo for 52 weeks. Dosing is based on pharmacokinetic modelling to achieve a steady-state serum theophylline of 1-5 mg/l. A dose of theophylline MR 200 mg once daily (or placebo once daily) will be taken by participants who do not smoke or participants who smoke but have an ideal body weight (IBW) of not more than 60 kg. A dose of theophylline MR 200 mg twice daily (or placebo twice daily) will be taken by participants who smoke and have an IBW of more than 60 kg. Participants will be reviewed at recruitment and after 6 and 12 months. The primary outcome is the total number of participant-reported COPD exacerbations requiring oral corticosteroids or antibiotics during the 52-week treatment period. DISCUSSION: The demonstration that 'low dose' theophylline increases the efficacy of inhaled corticosteroids in COPD by reducing the incidence of exacerbations is relevant not only to patients and clinicians but also to health-care providers, both in the UK and globally. TRIAL REGISTRATION: Current Controlled Trials ISRCTN27066620 was registered on Sept. 19, 2013, and the first subject was randomly assigned on Feb. 6, 2014

    DAXX promotes centromeric stability independently of ATRX by preventing the accumulation of R-loop-induced DNA double-stranded breaks

    Get PDF
    Maintaining chromatin integrity at the repetitive non-coding DNA sequences underlying centromeres is crucial to prevent replicative stress, DNA breaks and genomic instability. The concerted action of transcriptional repressors, chromatin remodelling complexes and epigenetic factors controls transcription and chromatin structure in these regions. The histone chaperone complex ATRX/DAXX is involved in the establishment and maintenance of centromeric chromatin through the deposition of the histone variant H3.3. ATRX and DAXX have also evolved mutually-independent functions in transcription and chromatin dynamics. Here, using paediatric glioma and pancreatic neuroendocrine tumor cell lines, we identify a novel ATRX-independent function for DAXX in promoting genome stability by preventing transcription-associated R-loop accumulation and DNA double-strand break formation at centromeres. This function of DAXX required its interaction with histone H3.3 but was independent of H3.3 deposition and did not reflect a role in the repression of centromeric transcription. DAXX depletion mobilized BRCA1 at centromeres, in line with BRCA1 role in counteracting centromeric R-loop accumulation. Our results provide novel insights into the mechanisms protecting the human genome from chromosomal instability, as well as potential perspectives in the treatment of cancers with DAXX alterations

    The role of individual protein kinase C isoforms in mouse mast cell function and their targeting by the immunomodulatory parasitic worm product, ES-62

    Get PDF
    ES-62, a glycoprotein secreted by the filarial nematode Acanthocheilonema viteae, has been shown to modulate the immune system through subversion of signal transduction pathways operating in various immune system cells. With respect to human bone marrow-derived mast cells (BMMCs), ES-62 was previously shown to inhibit FcϵRI-mediated mast cell functional responses such as degranulation and pro-inflammatory cytokine release through a mechanism involving the degradation of PKC-α. At the same time, it was noted that the worm product was able to degrade certain other PKC isoforms but the significance of this was uncertain. In this study, we have employed PKC isoform KO mice to investigate the role of PKC-α, -β -ϵ, and -θ in mouse BMMCs in order to establish their involvement in mast cell-mediated responses and also, if their absence impacts on ES-62’s activity. The data obtained support that in response to antigen cross-linking of IgE bound to FcϵRI, pro-inflammatory cytokine release is controlled in part by a partnership between one conventional and one novel isoform with PKC-α and -θ acting as positive regulators of IL-6 and TNF-α production, while PKC-β and ϵ act as negative regulators of such cytokines. Furthermore, ES-62 appears to target certain other PKC isoforms in addition to PKC-α to inhibit cytokine release and this may enable it to more efficiently inhibit mast cell responses
    corecore