21 research outputs found

    Voigt transmission windows in optically thick atomic vapours: a method to create single-peaked line centre filters

    Get PDF
    Cascading light through two thermal vapour cells has been shown to improve the performance of atomic filters that aim to maximise peak transmission over a minimised bandpass window. In this paper, we explore the atomic physics responsible for the operation of the second cell, which is situated in a transverse (Voigt) magnetic field and opens a narrow transmission window in an optically thick atomic vapour. By assuming transitions with Gaussian line shapes and magnetic fields sufficiently large to access the hyperfine Paschen–Back regime, the window is modelled by resolving the two transitions closest to line centre. We discuss the validity of this model and perform an experiment which demonstrates the evolution of a naturally abundant Rb transmission window as a function of magnetic field. The model results in a significant reduction in two-cell parameter space, which we use to find theoretical optimised cascaded line centre filters for Na, K, Rb and Cs across both D lines. With the exception of Cs, these all have a better figure of merit than comparable single cell filters in literature. Most noteworthy is a Rb-D2 filter which outputs >92% of light through a single peak at line centre, with maximum transmission 0.71 and a width of 330 MHz at half maximum

    A device for magnetic-field angle control in magneto-optical filters using a solenoid-permanent magnet pair.

    Get PDF
    Atomic bandpass filters are used in a variety of applications due to their narrow bandwidths and high transmission at specific frequencies. Predominantly, these filters are in the Faraday (Voigt) geometry, using an applied axial (transverse) magnetic field with respect to the laser propagation direction. Recently, there has been interest in filters realized with arbitrary-angle magnetic fields, which have been made by rotating permanent magnets with respect to the k-vector of the interrogating laser beam. However, the magnetic field angle achievable with this method is limited as field uniformity across the cell decreases as the rotation angle increases. In this work, we propose and demonstrate a new method of generating an arbitrary-angle magnetic field, using a solenoid to produce a small, and easily alterable, axial field, in conjunction with fixed permanent magnets to produce a large transverse field. We directly measure the fields produced by both methods, finding them to be very similar over the length of the vapor cell. We then compare the transmission profiles of filters produced using both methods, again finding excellent agreement. Finally, we demonstrate the sensitivity of the filter profile to changing magnetic field angle (solenoid current), which becomes easier to exploit with the much improved angle control and precision offered by our new design

    A device for magnetic-field angle control in magneto-optical filters using a solenoid-permanent magnet pair

    Full text link
    Atomic bandpass filters are used in a variety of applications due to their narrow bandwidths and high transmission at specific frequencies. Predominantly these filters in the Faraday (Voigt) geometry, using an applied axial(transverse) magnetic field with respect to the laser propagation direction. Recently, there has been interest in filters realized with arbitrary-angle magnetic fields, which have been made by rotating permanent magnets with respect to the kk-vector of the interrogating laser beam. However, the magnetic-field angle achievable with this method is limited as field uniformity across the cell decreases as the rotation angle increases. In this work, we propose and demonstrate a new method of generating an arbitrary-angle magnetic field, using a solenoid to produce a small, and easily alterable, axial field, in conjunction with fixed permanent magnets to produce a large transverse field. We directly measure the fields produced by both methods, finding them to be very similar over the length of the vapor cell. We then compare the transmission profiles of filters produced using both methods, again finding excellent agreement. Finally, we demonstrate the sensitivity of filter profile to changing magnetic-field angle (solenoid current), which becomes easier to exploit with the much improved angle control and precision offered by our new design.Comment: 8 pages, 6 figure

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Reverse flow in academic mobility from core to periphery:Motivations of international faculty working in Kazakhstan

    Get PDF
    Through expanding flows of labor and knowledge on a global scale, academics are increasingly mobile as higher education institutions compete for talent that transcends borders. However, talent often flows from the periphery to the core as scholars seek out employment in recognized institutions of higher learning in developed economies. This study examines faculty mobility in a reverse direction: from the core to Kazakhstan, the largest country in Central Asia. What factors persuade faculty members to relocate to Kazakhstan for full-time employment? What types of individuals pursue this relocation? Through interviews with international faculty members based in Kazakhstan, the study identifies push factors that trigger departure from one’s previous country of residence: job market, unsatisfactory work conditions, age, and marital status. Alternatively, Kazakhstan attracts scholars via pull factors that include salary, sense of adventure, and the opportunity to build new institutions and programs as well as conduct research. Unlike previous studies that highlight boundaryless mobility and individual agency, this study reveals constraints that mediate international faculty mobility. Furthermore, salary plays a limited role as a pull factor particularly among early career academics who are seeking research opportunities and meaningful contributions in building new academic programs and institutions

    Better magneto-optical filters with cascaded vapor cells

    Get PDF
    Single-cell magneto-optical Faraday filters find great utility and are realized with either ‘wing’ or ‘line center’ spectral profiles. We show that cascading a second cell with independent axial (Faraday) or transverse (Voigt) magnetic field leads to improved performance in terms of figure of merit (FOM) and spectral profile. The first cell optically rotates the plane of polarization of light creating the high transmission window; the second cell selectively absorbs the light eliminating unwanted transmission. Using naturally-abundant Rb vapor cells, we realize a Faraday-Faraday wing filter and the first recorded Faraday-Voigt line center filter which show excellent agreement with theory. The two filters have FOM values of 0.86 and 1.63 GHz−1 respectively
    corecore