5,039 research outputs found

    The Effect of Ice Formations on Propeller Performance

    Get PDF
    Measurements of propeller efficiency loss due to ice formation are supplemented by an analysis to establish the magnitude of efficiency losses to be anticipated during flight in icing conditions. The measurements were made during flight in natural icing conditions; whereas the analysis consisted of an investIgation of changes in blade-section aerodynamic characteristics caused by ice formation and the resulting propeller efficiency changes. Agreement in the order of magnitude of eff 1- ciency losses to be expected is obtained between measured and analytical results. The results indicate that, in general, efficiency losses can be expected to be less than 10 percent; whereas maximum losses, which will be encountered only rarely, may be as high as 15 or 20 percent. Reported. losses larger than 15 or 20 percent, based on reductions in airplane performance, probably are due to ice accretions on other parts of the airplane. Blade-element theory is used in the analytical treatment, and calculations are made to show the degree to which the aerodynamic characteristics of a blade section. must be altered to produce various propeller efficiency losses. The effects of ice accretions on airfoil-section characteristics at subcritical speeds and their influence on drag-divergence Mach number are examined, and. the attendant maximum efficiency losses are computed. The effect of kinetic heating on the radial extent of ice formation is considered, and its influence on required length of blade heating shoes is discussed. It is demonstrated how the efficiency loss resulting from an icing encounter is influenced by the decisions of the pilot in adjusting the engine and propeller controls

    Increasing security of supply by the use of a local power controller during large system disturbances

    Get PDF
    This paper describes intelligent ways in which distributed generation and local loads can be controlled during large system disturbances, using Local Power Controllers. When distributed generation is available, and a system disturbance is detected early enough, the generation can be dispatched, and its output power can be matched as closely as possible to local microgrid demand levels. Priority-based load shedding can be implemented to aid this process. In this state, the local microgrid supports the wider network by relieving the wider network of the micro-grid load. Should grid performance degrade further, the local microgrid can separate itself from the network and maintain power to the most important local loads, re-synchronising to the grid only after more normal performance is regained. Such an intelligent system would be a suitable for hospitals, data centres, or any other industrial facility where there are critical loads. The paper demonstrates the actions of such Local Power Controllers using laboratory experiments at the 10kVA scale

    Discourse and identity in a corpus of lesbian erotica

    Get PDF
    This article uses corpus linguistic methodologies to explore representations of lesbian desires and identities in a corpus of lesbian erotica from the 1980s and 1990s. We provide a critical examination of the ways in which “lesbian gender,” power, and desire are represented, (re-)produced, and enacted, often in ways that challenge hegemonic discourses of gender and sexuality. By examining word frequencies and collocations, we critically analyze some of the themes, processes, and patterns of representation in the texts. Although rooted in linguistics, we hope this article provides an accessible, interdisciplinary, and timely contribution toward developing understandings of discursive practices surrounding gender and sexuality

    SERVICE QUALITY OF PUBLIC AND PRIVATE SECTOR BANKS IN TIRUNELVELI DISTRICT

    Get PDF
    Service Quality of the banks referred as an obligation of all banks to fulfill the objectives and needs of the customers. Service quality in private sector banks is good compare to public sector banks. The various issues the banks are not able to provide immediate response to customers, service time duration is more, long queue deposit the money, waiting for long time, staff behavior is not good, especially public sector banks are not providing multitude services like payment of bills, payment of tax, Banc assurance etc. and problem relating to banking service such as bank statements, error in the statements are not provided immediate response to customers. The scope of this research is to identify the service quality of public and private sector banks in Tirunelveli district. This study only focuses on the dimensions of service quality i.e. reliability, assurance, tangibility, empathy and responsiveness. The study was done taking two types of banks such as public and private sector banks in Tirunelveli district into consideration. The survey was restricted to the bank customers in Tirunelveli district only. As the population size is infinite, 672 respondents are selected as sample among the population using stratified random sampling. The sample has been stratified as 528 from public sector bank customers and 144 from private sector bank customers in Tirunelveli district

    Total column CO_2 measurements at Darwin, Australia – site description and calibration against in situ aircraft profiles

    Get PDF
    An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO_2 and O_2 and other gases. Measured CO_2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January–February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clear-sky low airmass relative precision of 0.1% is demonstrated in the CO2 and O2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS X_(CO_2) relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis

    Lag-Optimized Blood Oxygenation Level Dependent Cerebrovascular Reactivity Estimates Derived From Breathing Task Data Have a Stronger Relationship With Baseline Cerebral Blood Flow

    Get PDF
    Published: 15 June 2022Cerebrovascular reactivity (CVR), an important indicator of cerebrovascular health, is commonly studied with the Blood Oxygenation Level Dependent functional MRI (BOLD-fMRI) response to a vasoactive stimulus. Theoretical and empirical evidence suggests that baseline cerebral blood flow (CBF) modulates BOLD signal amplitude and may influence BOLD-CVR estimates. We address how acquisition and modeling choices affect the relationship between baseline cerebral blood flow (bCBF) and BOLD-CVR: whether BOLD-CVR is modeled with the inclusion of a breathing task, and whether BOLD-CVR amplitudes are optimized for hemodynamic lag effects. We assessed between-subject correlations of average GM values and within-subject spatial correlations across cortical regions. Our results suggest that a breathing task addition to a resting-state acquisition, alongside lag-optimization within BOLD-CVR modeling, can improve BOLD-CVR correlations with bCBF, both between- and within-subjects, likely because these CVR estimates are more physiologically accurate. We report positive correlations between bCBF and BOLD-CVR, both between- and within-subjects. The physiological explanation of this positive correlation is unclear; research with larger samples and tightly controlled vasoactive stimuli is needed. Insights into what drives variability in BOLD-CVR measurements and related measurements of cerebrovascular function are particularly relevant when interpreting results in populations with altered vascular and/or metabolic baselines or impaired cerebrovascular reserve.This work was supported by the Center for Translational Imaging at Northwestern University. The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health [K12HD073945]. KZ was supported by an NIH-funded training program [T32EB025766]. SM was supported by the European Union’s Horizon 2020 research and innovation program [Marie Skłodowska-Curie grant agreement No. 713673] and a fellowship from La Caixa Foundation [ID 100010434, fellowship code LCF/BQ/IN17/11620063]. CC-G was supported by the Spanish Ministry of Economy and Competitiveness [Ramon y Cajal Fellowship, RYC2017-21845], the Basque Government [BERC 2018-2021 and PIBA_2019_104], and the Spanish Ministry of Science, Innovation and Universities [MICINN; PID2019- 105520GB-100]

    A practical modification to a resting state fMRI protocol for improved characterization of cerebrovascular function

    Get PDF
    Available online 24 June 2021.Cerebrovascular reactivity (CVR), defined here as the Blood Oxygenation Level Dependent (BOLD) response to a CO 2 pressure change, is a useful metric of cerebrovascular function. Both the amplitude and the timing (hemo- dynamic lag) of the CVR response can bring insight into the nature of a cerebrovascular pathology and aid in understanding noise confounds when using functional Magnetic Resonance Imaging (fMRI) to study neural ac- tivity. This research assessed a practical modification to a typical resting-state fMRI protocol, to improve the characterization of cerebrovascular function. In 9 healthy subjects, we modelled CVR and lag in three resting- state data segments, and in data segments which added a 2–3 minute breathing task to the start of a resting-state segment. Two different breathing tasks were used to induce fluctuations in arterial CO 2 pressure: a breath-hold task to induce hypercapnia (CO 2 increase) and a cued deep breathing task to induce hypocapnia (CO 2 decrease). Our analysis produced voxel-wise estimates of the amplitude (CVR) and timing (lag) of the BOLD-fMRI response to CO 2 by systematically shifting the CO 2 regressor in time to optimize the model fit. This optimization inher- ently increases gray matter CVR values and fit statistics. The inclusion of a simple breathing task, compared to a resting-state scan only, increases the number of voxels in the brain that have a significant relationship between CO 2 and BOLD-fMRI signals, and improves our confidence in the plausibility of voxel-wise CVR and hemody- namic lag estimates. We demonstrate the clinical utility and feasibility of this protocol in an incidental finding of Moyamoya disease, and explore the possibilities and challenges of using this protocol in younger populations. This hybrid protocol has direct applications for CVR mapping in both research and clinical settings and wider applications for fMRI denoising and interpretation.This research was supported by the Eunice Kennedy Shriver Na- tional Institute of Child Health and Human Development of the Na- tional Institutes of Health under award number K12HD073945. The pediatric dataset and cerebral palsy dataset were collected with sup- port of National Institutes of Health award R03 HD094615–01A1. The authors would like to acknowledge Marie Wasielewski and Carson Ingo for their support in acquiring these data. K.Z. was supported by an NIH-funded training program (T32EB025766). S.M. was supported by the European Union’s Horizon 2020 research and innovation pro- gram (Marie Sk ł odowska-Curie grant agreement No. 713673), a fel- lowship from La Caixa Foundation (ID 100010434, fellowship code LCF/BQ/IN17/11620063) and C.C.G was supported by the Spanish Ministry of Economy and Competitiveness (Ramon y Cajal Fellowship, RYC-2017- 21845), the Basque Government (BERC 2018–2021 and PIBA_2019_104) and the Spanish Ministry of Science, Innovation and Universities (MICINN; PID2019–105520GB-100)

    ICA-based denoising strategies in breath-hold induced cerebrovascular reactivity mapping with multi echo BOLD fMRI

    Get PDF
    Available online 6 March 2021.Performing a BOLD functional MRI (fMRI) acquisition during breath-hold (BH) tasks is a non-invasive, robust method to estimate cerebrovascular reactivity (CVR). However, movement and breathing-related artefacts caused by the BH can substantially hinder CVR estimates due to their high temporal collinearity with the effect of interest, and attention has to be paid when choosing which analysis model should be applied to the data. In this study, we evaluate the performance of multiple analysis strategies based on lagged general linear models applied on multi- echo BOLD fMRI data, acquired in ten subjects performing a BH task during ten sessions, to obtain subject-specific CVR and haemodynamic lag estimates. The evaluated approaches range from conventional regression models, i.e. including drifts and motion timecourses as nuisance regressors, applied on single-echo or optimally-combined data, to more complex models including regressors obtained from multi-echo independent component analysis with different grades of orthogonalization in order to preserve the effect of interest, i.e. the CVR. We compare these models in terms of their ability to make signal intensity changes independent from motion, as well as the reliability as measured by voxelwise intraclass correlation coefficients of both CVR and lag maps over time. Our results reveal that a conservative independent component analysis model applied on the optimally-combined multi-echo fMRI signal offers the largest reduction of motion-related effects in the signal, while yielding reliable CVR amplitude and lag estimates, although a conventional regression model applied on the optimally-combined data results in similar estimates. This work demonstrates the usefulness of multi-echo based fMRI acquisitions and independent component analysis denoising for precision mapping of CVR in single subjects based on BH paradigms, fostering its potential as a clinically-viable neuroimaging tool for individual patients. It also proves that the way in which data-driven regressors should be incorporated in the analysis model is not straight-forward due to their complex interaction with the BH-induced BOLD response.This research was supported by the European Union’s Horizon 2020 research and innovation program ( Marie Sk ł odowska-Curie grant agreement No. 713673 ), a fellowship from La Caixa Foundation (ID 100010434 , fellowship code LCF/BQ/IN17/11620063 ), the Spanish Ministry of Economy and Competitiveness ( Ramon y Cajal Fellowship, RYC-2017- 21845 ), the Spanish State Research Agency (BCBL “Severo Ochoa ”excellence accreditation, SEV- 2015-490 ), the Basque Govern- ment ( BERC 2018-2021 and PIBA_2019_104 ), the Spanish Ministry of Science, Innovation and Universities (MICINN; PID2019-105520GB-100 and FJCI-2017-31814 ), and the Eunice Kennedy Shriver National Insti- tute of Child Health and Human Development of the National Institutes of Health under award number K12HD073945
    corecore