44 research outputs found

    Regular particle acceleration in relativistic jets

    Full text link
    Exact solution is obtained for electromagnetic field around a conducting cylinder of infinite length and finite radius, with a periodical axial current, when the wave length is much larger than the radius of the cylinder. The solution describes simultaneously the fields in the near zone close to the cylinder, and transition to the wave zone. Proper long-wave oscillations of such cylinder are studied. The electromagnetic energy flux from the cylinder is calculated. These solutions could be applied for description of the electromagnetic field around relativistic jets from active galactic nuclei and quasars and particle acceleration inside jets.Comment: 12 pages, 1 figure. To appear in Proc. of the Workshop The Multiwavelength Approach To Unidentified Gamma Ray Sources. The University of Hong Kong - Hong Kong, China, 1-4 June 200

    What Can WMAP Tell Us About The Very Early Universe? New Physics as an Explanation of Suppressed Large Scale Power and Running Spectral Index

    Full text link
    The Wilkinson Microwave Anisotropy Probe microwave background data may be giving us clues about new physics at the transition from a ``stringy'' epoch of the universe to the standard Friedmann Robertson Walker description. Deviations on large angular scales of the data, as compared to theoretical expectations, as well as running of the spectral index of density perturbations, can be explained by new physics whose scale is set by the height of an inflationary potential. As examples of possible signatures for this new physics, we study the cosmic microwave background spectrum for two string inspired models: 1) modifications to the Friedmann equations and 2) velocity dependent potentials. The suppression of low ``l'' modes in the microwave background data arises due to the new physics. In addition, the spectral index is red (n<1) on small scales and blue (n>1) on large scales, in agreement with data.Comment: 18 pages, 2 figures, submitted for publication in Physical Review D, references added in this versio

    Black Hole, Jet, and Disk: The Universal Engine

    Get PDF
    In this paper I review the results of our ongoing project to investigate the coupling between accretion disk and radio jet in galactic nuclei and stellar mass black holes. We find a good correlation between the UV bump luminosity and the radio luminosities of AGN, which improves upon the usual [OIII]/radio correlations. Taking mass and energy conservation in the jet/disk system into account we can successfully model the correlation for radio-loud and radio-weak quasars. We find that jets are comparable in power to the accretion disk luminosity, and the difference between radio-loud and radio-weak may correspond to two natural stages of the relativistic electron distribution -- assuming that radio weak quasars have jets as well. The distribution of flat- and steep-spectrum sources is explained by bulk Lorentz factors gamma_j ~ 5-10. The absence of radio-loud quasars below a critical optical luminosity coincides with the FR I/FR II break and could be explained by a powerdependent, ``closing'' torus. This points towards a different type of obscuring torus in radio-loud host galaxies which might be a consequence of past mergers (e.g. by the temporary formation of a binary black-hole). Interaction of the jet with the closing torus might in principle also help to make a jet radio-loud. Turning to stellar-mass black holes we find that galactic jet sources can be described with the same coupled jet/disk model as AGN which is suggestive of some kind of universal coupling between jet and accretion disk around compact objects.Comment: to appear in ``Jets from Stars and Galactic Nuclei'', Springer Lecture Notes, plain TeX, 16 pages, also at http://www.astro.umd.edu/~hfalcke/publications.htm

    Constraining Cut-off Physics in the Cosmic Microwave Background

    Full text link
    We investigate the ability to constrain oscillatory features in the primordial power spectrum using current and future cosmic microwave background observations. In particular, we study the observability of an oscillation arising from imprints of physics at the cut-off energy scale. We perform a likelihood analysis on the WMAP data set, and find that the current data set constrains the amplitude of the oscillations to be less than 0.77 at 2-sigma, consistent with a power spectrum without oscillations. In addition, we investigate the fundamental limitations in the measurement of oscillation parameters by studying the constraints from a cosmic variance limited experiment. We find that such an experiment is capable of constraining the amplitude of such oscillations to be below 0.005, implying that reasonable models with cut-off energy scales Lambda>200 H_infl are unobservable through the microwave background.Comment: 16 pages, 7 figures; PRD accepted versio

    Weak Lensing and CMB: Parameter forecasts including a running spectral index

    Get PDF
    We use statistical inference theory to explore the constraints from future galaxy weak lensing (cosmic shear) surveys combined with the current CMB constraints on cosmological parameters, focusing particularly on the running of the spectral index of the primordial scalar power spectrum, αs\alpha_s. Recent papers have drawn attention to the possibility of measuring αs\alpha_s by combining the CMB with galaxy clustering and/or the Lyman-α\alpha forest. Weak lensing combined with the CMB provides an alternative probe of the primordial power spectrum. We run a series of simulations with variable runnings and compare them to semi-analytic non-linear mappings to test their validity for our calculations. We find that a ``Reference'' cosmic shear survey with fsky=0.01f_{sky}=0.01 and 6.6×1086.6\times 10^8 galaxies per steradian can reduce the uncertainty on nsn_s and αs\alpha_s by roughly a factor of 2 relative to the CMB alone. We investigate the effect of shear calibration biases on lensing by including the calibration factor as a parameter, and show that for our Reference Survey, the precision of cosmological parameter determination is only slightly degraded even if the amplitude calibration is uncertain by as much as 5%. We conclude that in the near future weak lensing surveys can supplement the CMB observations to constrain the primordial power spectrum.Comment: 12 pages, 10 figures, revtex4. Final form to appear in Phys Rev

    Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna sensor. As the ultra-wideband reception of pulses is not widely discussed in antenna literature, we review the relevant antenna characteristics and enhance theoretical considerations towards the impulse response of antennas including polarization effects and multiple signal reflections. On the basis of the vector effective length we study the transient response characteristics of three candidate antennas in the time domain. Observing the variation of the continuous galactic background intensity we rank the antennas with respect to the noise level added to the galactic signal

    VLA observations of the extended radio core in 3C 236

    No full text
    corecore