17 research outputs found

    Epithelium-specific Response of Cultured Keratinocytes to Infection with Adenovirus Type 2

    Get PDF
    Adenoviruses are pathogenic for certain stratified squamous epithelia. The sites most frequently involved are the upper respiratory tract and oropharynx. Adenovirus infections of the epidermis are quite rare. We examined the virus-cell interactions of adenovirus type 2 (Ad2) and cultured human keratinocytes grown from a variety of body sites. Our intent was to explore the nature of the apparent epithelium-specific susceptibility to Ad2. In brief, we found that in vitro viral susceptibility of the keratinocytes could be reliably predicted based on whether the cells originated from an epidermal or oropharyngeal surface. Ad2 proceeded through a complete vegetative cycle when used to infect cultured keratinocytes from oropharyngeal sites (e.g., gingiva and soft palate). In contrast, Ad2 infection was severely restricted in keratinocytes from epidermal sites (e.g., foreskin, abdomen, and buttock). These results demonstrate that the in vitro response to infection with Ad2 reflects in vivo tissue-specific susceptibility. In vivo, cervical epithelium is rarely infected with Ad2 and yet in culture, cervical keratinocytes were fully permissive for Ad2 replication. We propose that the permissive or nonpermissive response to Ad2 may be regulated by a particular aspect of cell phenotype. Because the permissive responses seen in this study were all generated in keratinocytes from mucosal sites, it is possible the in vitro response to Ad2 reflects inherent differences between mucosal and epidermal keratinocytes

    IL-17 Signaling triggers degradation of the constitutive NF-κB inhibitor ABIN-1

    Get PDF
    IL-17 activates NF-κB and induces expression of proinflammatory genes. IL-17 drives disease in autoimmune conditions, and anti–IL-17 Abs have shown impressive success in the clinic. Although produced by lymphocytes, IL-17 predominantly signals in fibroblasts and epithelial cells. IL-17–driven inflammation is kept in check by negative feedback signaling molecules, including the ubiquitin editing enzyme A20, whose gene TNFAIP3 is linked to autoimmune disease susceptibility. The A20 binding inhibitor of NF-κB activation 1 (ABIN-1) is an A20-binding protein encoded by the TNIP1 gene, which is also linked to autoimmune disease susceptibility including psoriasis. Accordingly, we hypothesized that ABIN-1 might play a role in negatively regulating IL-17 signaling activity. Indeed, ABIN-1 enhanced both tonic and IL-17–dependent NF-κB signaling in IL-17–responsive fibroblast cells. Interestingly, the inhibitory activities of ABIN-1 on IL-17 signaling were independent of A20. ABIN-1 is a known NF-κB target gene, and we found that IL-17–induced activation of NF-κB led to enhanced ABIN-1 mRNA expression and promoter activity. Surprisingly, however, the ABIN-1 protein was inducibly degraded following IL-17 signaling in a proteasome-dependent manner. Thus, ABIN-1, acting independently of A20, restricts both baseline and IL-17–induced inflammatory gene expression. We conclude that IL-17–induced signals lead to degradation of ABIN-1, thereby releasing a constitutive cellular brake on NF-κB activation

    TNIP1 in Autoimmune Diseases: Regulation of Toll-like Receptor Signaling

    No full text
    TNIP1 protein is increasingly being recognized as a key repressor of inflammatory signaling and a potential factor in multiple autoimmune diseases. In addition to earlier foundational reports of TNIP1 SNPs in human autoimmune diseases and TNIP1 protein-protein interaction with receptor regulating proteins, more recent studies have identified new potential interaction partners and signaling pathways likely modulated by TNIP1. Subdomains within the TNIP1 protein as well as how they interact with ubiquitin have not only been mapped but inflammatory cell- and tissue-specific consequences subsequent to their defective function are being recognized and related to human disease states such as lupus, scleroderma, and psoriasis. In this review, we emphasize receptor signaling complexes and regulation of cytoplasmic signaling steps downstream of TLR given their association with some of the same autoimmune diseases where TNIP1 has been implicated. TNIP1 dysfunction or deficiency may predispose healthy cells to the inflammatory response to otherwise innocuous TLR ligand exposure. The recognition of the anti-inflammatory roles of TNIP1 and improved integrated understanding of its physical and functional association with other signaling pathway proteins may position TNIP1 as a candidate target for the design and/or testing of next-generation anti-inflammatory therapeutics

    Enhanced Wound Healing- and Inflammasome-Associated Gene Expression in TNFAIP3-Interacting Protein 1- (TNIP1-) Deficient HaCaT Keratinocytes Parallels Reduced Reepithelialization

    No full text
    TNIP1 protein is a widely expressed, cytoplasmic inhibitor of inflammatory signaling initiated by membrane receptors such as TLRs which recognize pathogen-associated and damage-associated molecular patterns (PAMPs and DAMPs). Keratinocyte TNIP1 deficiency sensitizes cells to PAMPs and DAMPs promoting hyperresponsive expression and secretion of cytokine markers (e.g., IL-8 and IL-6) relevant to cases of chronic inflammation, like psoriasis, where TNIP1 deficiency has been reported. Here, we examined the impact of TNIP1 deficiency on gene expression and cellular responses (migration and viability) relevant to acute inflammation as typically occurs in wound healing. Using siRNA-mediated TNIP1 expression knockdown in cultured HaCaT keratinocytes, we investigated TNIP1 deficiency effects on signaling downstream of TLR3 agonism with low-concentration poly (I:C), a representative PAMP/DAMP. The combination of TNIP1 knockdown and PAMP/DAMP signaling disrupted expression of specific keratinocyte differentiation markers (e.g., transglutaminase 1 and involucrin). These same conditions promoted synergistically increased expression of wound-associated markers (e.g., S100A8, TGFβ, and CCN2) suggesting potential benefit of increased inflammatory response from reduced TNIP1 protein. Unexpectedly, poly (I:C) challenge of TNIP1-deficient cells restricted reepithelialization and reduced cell viability. In these cells, there was not only increased expression for genes associated with inflammasome assembly (e.g., ASC, procaspase 1) but also for A20, a TNIP1 partner protein that represses cell-death signaling. Despite this possibly compensatory increase in A20 mRNA, there was a decrease in phospho-A20 protein, the form necessary for quenching inflammation. Hyperresponsiveness to poly (I:C) in TNIP1-deficient keratinocytes was in part mediated through p38 and JNK pathways. Taken together, we conclude that TNIP1 deficiency promotes enhanced expression of factors associated with promoting wound healing. However, the coupled, increased potential priming of the inflammasome and reduced compensatory activity of A20 has a net negative effect on overall cell recovery potential manifested by poor reepithelialization and viability. These findings suggest a previously unrecognized role for TNIP1 protein in limiting inflammation during successful progression through early wound healing stages
    corecore