323 research outputs found

    Structural and functional analysis of critical amino acids in TMVI of the NHE1 isoform of the Na+/H+ exchanger

    Get PDF
    AbstractThe mammalian Na+/H+ exchanger isoform 1 (NHE1) resides on the plasma membrane and exchanges one intracellular H+ for one extracellular Na+. It maintains intracellular pH and regulates cell volume, and cell functions including growth and cell differentiation. Previous structural and functional studies on TMVI revealed several amino acids that are potentially pore lining. We examined these and other critical residues by site-directed mutagenesis substituting Asn227→Ala, Asp, Arg; Ile233→Ala; Leu243→Ala; Glu247→Asp, Gln; Glu248→Asp, Gln. Mutant NHE1 proteins were characterized in AP-1 cells, which do not express endogenous NHE1. All the TMVI critical amino acids were highly sensitive to substitution and changes often lead to a dysfunctional protein. Mutations of Asn227→Ala, Asp, Arg; Ile233→Ala; Leu243→Ala; Glu247→Asp; Glu248→Gln yielded significant reduction in NHE1 activity. Mutants of Asn227 demonstrated defects in protein expression, targeting and activity. Substituting Asn227→Arg and Ile233→Ala decreased the surface localization and expression of NHE1 respectively. The pore lining amino acids Ile233 and Leu243 were both essential for activity. Glu247 was not essential, but the size of the residue at this location was important while the charge on residue Glu248 was more critical to NHE1 function. Limited trypsin digestion on Leu243→Ala and Glu248→Gln revealed that they had increased susceptibility to proteolytic attack, indicating an alteration in protein conformation. Modeling of TMVI with TMXI suggests that these TM segments form part of the critical fold of NHE1 with Ile233 and Leu465 of TMXI forming a critical part of the extracellular facing ion conductance pathway

    Site-specific Mutants of Oncomodulin: 1H NMR and optical stopped-flow studies of the effect on the metal binding properties of an Asp59 → Glu59 substitution in the calcium-specific site

    Get PDF
    Abstract High resolution 1H nuclear magnetic resonance spectroscopy and optical stopped-flow techniques have been used to study the metal binding properties of a site-specific mutant of bacterial recombinant oncomodulin in which glutamate has replaced a liganding aspartate at position 59 in the CD calcium-binding site. In particular we have followed the replacement of calcium by lutetium in bacterial recombinant oncomodulin and D59E oncomodulin to provide a measure of the protein's preferences for metal ions of different ionic radii. The result of the Asp----Glu substitution is to make the mutant oncomodulin more similar to rat parvalbumin in terms of its relative CD- and EF-domain affinities for lutetium(III), that is to increase its affinity for metal ions with smaller ionic radii. This finding supports the original hypothesis that the presence of Asp at sequence position 59 is an important factor in the reduced preference of the CD site of oncomodulin for smaller metals such as magnesium (Williams, T. C., Corson, D. C., Sykes, B. D., and MacManus, J. P. (1987) J. Biol. Chem. 262, 6248-6256). However, our studies show that both the CD and the EF sites are affected by this single residue substitution suggesting that many factors play a role in the metal binding affinity and interaction between the two sites

    Metal ion-dependent, reversible, protein filament formation by designed beta-roll polypeptides

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A right-handed, calcium-dependent β-roll structure found in secreted proteases and repeat-in-toxin proteins was used as a template for the design of minimal, soluble, monomeric polypeptides that would fold in the presence of Ca<sup>2+</sup>. Two polypeptides were synthesised to contain two and four metal-binding sites, respectively, and exploit stacked tryptophan pairs to stabilise the fold and report on the conformational state of the polypeptide.</p> <p>Results</p> <p>Initial analysis of the two polypeptides in the presence of calcium suggested the polypeptides were disordered. The addition of lanthanum to these peptides caused aggregation. Upon further study by right angle light scattering and electron microscopy, the aggregates were identified as ordered protein filaments that required lanthanum to polymerize. These filaments could be disassembled by the addition of a chelating agent. A simple head-to-tail model is proposed for filament formation that explains the metal ion-dependency. The model is supported by the capping of one of the polypeptides with biotin, which disrupts filament formation and provides the ability to control the average length of the filaments.</p> <p>Conclusion</p> <p>Metal ion-dependent, reversible protein filament formation is demonstrated for two designed polypeptides. The polypeptides form filaments that are approximately 3 nm in diameter and several hundred nm in length. They are not amyloid-like in nature as demonstrated by their behaviour in the presence of congo red and thioflavin T. A capping strategy allows for the control of filament length and for potential applications including the "decoration" of a protein filament with various functional moieties.</p

    Transgenic miR156 Switchgrass in the Field: Growth, Recalcitrance and Rust Susceptibility

    Get PDF
    Sustainable utilization of lignocellulosic perennial grass feedstocks will be enabled by high biomass production and optimized cell wall chemistry for efficient conversion into biofuels. MicroRNAs are regulatory elements that modulate the expression of genes involved in various biological functions in plants, including growth and development. In greenhouse studies, overexpressing a microRNA (miR156) gene in switchgrass had dramatic effects on plant architecture and flowering, which appeared to be driven by transgene expression levels. Highexpressing lines were extremely dwarfed, whereas low and moderate-expressing lines had higher biomass yields, improved sugar release and delayed flowering. Four lines with moderate or low miR156 overexpression from the prior greenhouse study were selected for a field experiment to assess the relationship between miR156 expression and biomass production over three years. We also analysed important bioenergy feedstock traits such as flowering, disease resistance, cell wall chemistry and biofuel production. Phenotypes of the transgenic lines were inconsistent between the greenhouse and the field as well as among different field growing seasons. One low expressing transgenic line consistently produced more biomass (25%–56%) than the control across all three seasons, which translated to the production of 30% more biofuel per plant during the final season. The other three transgenic lines produced less biomass than the control by the final season, and the two lines with moderate expression levels also exhibited altered disease susceptibilities. Results of this study emphasize the importance of performing multiyear field studies for plants with altered regulatory transgenes that target plant growth and development

    Mapping the Interacting Regions between Troponins T and C. Binding of TnT and TnI peptides to TnC and NMR mapping of the TnT-binding site on TnC

    Get PDF
    Muscular contraction is triggered by an increase in calcium concentration, which is transmitted to the contractile proteins by the troponin complex. The interactions among the components of the troponin complex (troponins T, C, and I) are essential to understanding the regulation of muscle contraction. While the structure of TnC is well known, and a model for the binary TnC·TnI complex has been recently published (Tung, C.-S., Wall, M. E., Gallagher, S. C., and Trewhella, J. (2000)Protein Sci. 9, 1312–1326), very little is known about TnT. Using non-denaturing gels and NMR spectroscopy, we have analyzed the interactions between TnC and five peptides from TnT as well as how three TnI peptides affect these interactions. Rabbit fast skeletal muscle peptide TnT-(160–193) binds to TnC with a dissociation constant of 30 ± 6 µm. This binding still occurs in the presence of TnI-(1–40) but is prevented by the presence of TnI-(56–115) or TnI-(96–139), both containing the primary inhibitory region of TnI. TnT-(228–260) also binds TnC. The binding site for TnT-(160–193) is located on the C-terminal domain of TnC and was mapped to the surface of TnC using NMR chemical shift mapping techniques. In the context of the model for the TnC·TnI complex, we discuss the interactions between TnT and the other troponin subunits

    A genome-wide scan for common alleles affecting risk for autism

    Get PDF
    Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10−8. When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10−8 threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C
    corecore