444 research outputs found

    Controlling molten carbonate distribution in dual-phase molten salt-ceramic membranes to increase carbon dioxide permeation rates

    Get PDF
    Dual-phase molten salt-ceramic membranes show high permselectivity for CO2 when molten carbonate is supported in a porous oxygen-ion and/or electron conductor. In this arrangement, the support likely contributes to permeation. Thus, if one is to understand and ultimately design membranes, it is also important to perform experiments with an inert support where permeation relies upon the molten carbonate properties alone. Here, a nominally inert material (Al2O3) was used in order to restrict permeation to molten carbonate. Model Al2O3 dual-phase membranes were fabricated using laser drilling to provide an order of magnitude difference in molten salt-gas interfacial area between feed and permeate sides. Molten carbonate thickness in the model membranes was also varied, independent of the molten salt-gas interfacial area. For all thicknesses studied, CO2 permeation rates showed a significant temperature dependence from 500 to 750 °C, suggesting an activated process was rate-limiting, likely a permeate-side molten salt-gas interfacial process, i.e. desorption of CO2. We applied these findings in asymmetric hollow-fibre supports, a geometry with inherent modularity and scalability, by developing a new carbonate infiltration method to control molten carbonate distribution within the hollow fibre. Compared to a conventionally prepared dual-phase hollow-fibre membrane with an uncontrolled distribution of carbonates, permeation rates were increased by up to 4 times when the molten salt was confined to the packed-pore network, i.e. without infiltrating the hollow-fibre micro-channels. X-ray micro-CT investigations supported the idea that the resulting increase in interfacial area for desorption of CO2 was the key structural difference contributing to increased permeation rates. For CO2 separation, where large volumes of gas must be processed, such increases in permeation rates will reduce the demand for membrane materials, although one must note the higher permeation rates achievable with oxygen-ion and/or electron conducting supports

    High CO2 permeability in supported molten-salt membranes with highly dense and aligned pores produced by directional solidification

    Get PDF
    Composite molten salt-ceramic membranes are promising devices for high-temperature CO2 separation. Intensive material properties impact on separation performance as do membrane geometry (thickness) and microstructure (pore volume fraction, size, connectivity, and tortuosity factor). Although controlling pore size is considered somewhat routine, achieving pore alignment and connectivity is still challenging. Here we report the production of the first gas separation membrane using a porous ceramic matrix obtained from a directionally-solidified magnesium-stabilised zirconia (MgSZ) - MgO fibrilar eutectic as the membrane support. MgO was removed from the parent material by acid-etching to create a porous matrix with highly aligned pores with diameters of similar to 1 mu m. X-ray nano-computed tomography of a central portion (similar to 32, 000 mu m(3)) of the support identified similar to 21% porosity, with all pores aligned within 10 degrees and similar to 76% percolating along the longest sampled length. Employing the matrix as a support for a carbonate molten salt, a high CO2 permeability of 1.41x10(-10) mol m(-1).s(-1).Pa-1 at 815 degrees C was achieved, among the highest reported for supported molten-carbonate membranes (typically 10(-12) to 10(-10) mol m(-1).s(-1).Pa-1 at similar temperatures). We suggest that the high permeability is attributable to the excellent pore characteristics resulting from directional solidification, namely a dense array of parallel, micron-scale pores connecting the feed and permeate sides of the membrane

    Separation and concentration of CO 2 from air using a humidity-driven molten-carbonate membrane

    Get PDF
    Separation processes are substantially more difficult when the species to be separated is highly dilute. To perform any dilute separation, thermodynamic and kinetic limitations must be overcome. Here we report a molten-carbonate membrane that can ‘pump’ CO2 from a 400 ppm input stream (representative of air) to an output stream with a higher concentration of CO2, by exploiting ambient energy in the form of a humidity difference. The substantial H2O concentration difference across the membrane drives CO2 permeation ‘uphill’ against its own concentration difference, analogous to active transport in biological membranes. The introduction of this H2O concentration difference also results in a kinetic enhancement that boosts the CO2 flux by an order of magnitude even as the CO2 input stream concentration is decreased by three orders of magnitude from 50% to 400 ppm. Computational modelling shows that this enhancement is due to the H2O-mediated formation of carriers within the molten salt that facilitate rapid CO2 transport

    Isokinetic strength qualities that differentiate rapid deceleration performance in male youth academy soccer players

    Get PDF
    Introduction Decelerating (DEC) is just as frequent as accelerating in contemporary soccer match play (Russell et al., 2014). Recent evidence suggests that lower body eccentric strength directly improves the ability of a player to produce and tolerate braking forces (Spiteri et al., 2014). The aim of the present study was to identify if measures of isokinetic strength can differentiate performance of a rapid DEC maneuver. Method Nineteen (n=19) academy youth soccer players (age: 16.7 + 1yrs; height: 175 + 8.4cm ; body mass: 69.1+ 7.5kg; body fat: 9.5 + 3.9%) participated in the study. Tests included: isokinetic dynamometer (Cybex ΙΙ, Cybex International Inc., New York, USA) strength profiling of quadricep (Q) and hamstring (H) peak concentric (con) and eccentric (ecc) torque (both dominant [kicking leg] and non-dominant legs) assessed at slow (60°/s) and fast (180°/s) angular velocities. Functional H:Q ratios representative of knee flexion (Hcon:Qecc) and extension (Hecc:Qcon) was also calculated; 30m linear sprint time (with 5m, 10m and 20m splits) was recorded using a single beam timing system (Witty, Microgate, Italy) and rapid DEC quantified using time to stop (TTS) and distance to stop (DTS) determined following a 20m maximal acceleration (within 5% threshold of best 20m linear sprint time) using video analysis (Dartfish ProSuite 2011, Fribourg, Switzerland) captured from a 50Hz video camera (Panasonic HDC-HS900, Japan). Results 10, 20 and 30m sprint times had significantly large correlations with fast con peak Q torque (dom, r=-0.624, -0.568, - 0.621 and non-dom, r=-0.513, -0.512, -0.509) with fast peak H torque comprising significant correlations in the dom leg (r= -0.773, -0.561, -0.761) with moderate to large correlations in the non-dom leg (r= -0.5, -0.468, -0.464). At slow velocity con peak H torque had moderate to large correlations with 10, 20 and 30m sprint times. No significant correlations were found for peak con strength in either Q or H for DEC performance (TTS and DTS). Slow velocity Ecc peak Q torque (dom, r= -0.503, nondom, r=-0.542) and time to peak torque (r=-0.465) was significantly correlated to DEC TTS. No significant correlations were found for fast ecc strength parameters in Q or H for either sprint or DEC performance. Sprint and DEC performance had no significant correlations. Discussion The present study illustrates the need for specific strength qualities for attainment of high running velocities and rapid DEC performance. Specifically, players with superior sprint speed can produce high peak con forces in both Q and H at fast velocities. DEC seems to be a unique movement skill requiring specific ecc strength qualities. Interestingly, in this study slow velocity ecc strength of the Q seems to be critical for production of braking forces and reducing the time spent DEC. Increased time spent DEC has been found to increase tissue damage and muscle soreness, subsequently affecting post match recovery kinetics (Young et al., 2012). In conclusion this study highlights the need for careful consideration to developing strength qualities needed for DEC alongside those more commonly known for sprinting and accelerating. References Russell, M., Sparkes, W., Northeast, J., Cook, C. J., Love, T. D., Bracken, R. M., & Kilduff, L. P. (2014). Changes in acceleration and deceleration capacity throughout professional soccer match-play. Journal of Strength and Conditioning Research, in press. Spiteri, T., Nimphius, S., Hart, N. H., Specos, C., Sheppard, J. M., & Newton, R. U. (2014). Journal of Strength & Conditioning Research, 28(9), 2415–23. Young, W. B., Hepner, J., & Robbins, D. W. (2012). Journal of Strength and Conditioning Research, 26(2), 492–6

    Digestive and locomotor capacity show opposing responses to changing food availability in an ambush predatory fish

    Get PDF
    Metabolic rates vary widely within species, but little is known about how variation in the “floor” (i.e. standard metabolic rate in ectotherms; SMR) and “ceiling” (maximum metabolic rate; MMR) for an individual's aerobic scope (AS) are linked with the digestive and locomotor function. Any links among metabolic traits and aspects of physiological performance may also be modulated by fluctuations in food availability. This study followed changes in SMR, MMR, and digestive and locomotor capacity in Southern catfish (Silurus meridionalis) throughout 15 days of food deprivation and 15 days of refeeding. Individuals down-regulated SMR during food deprivation and showed only a 10% body mass decrease during this time. While critical swim speed (Ucrit), was robust to food-deprivation, digestive function decreased after fasting with a reduced peak oxygen uptake during specific dynamic action (SDA) and prolonged SDA duration. During refeeding, individuals displayed rapid growth and digestive function recovered to pre-fasting levels. However, refed fish showed a lower Ucrit than would be expected for their increased body length and in comparison to measures at the start of the study. Reduced swimming ability may be a consequence of compensatory growth: growth rate was negatively correlated with changes in Ucrit during refeeding. Southern catfish down-regulate digestive function to reduce energy expenditure during food deprivation, but regain digestive capacity during refeeding, potentially at the cost of decreased swimming performance. The plasticity of maintenance requirements suggests that SMR is a key fitness trait for in this ambush predator. Shifts in trait correlations with food availability suggest that the potential for correlated selection may depend on context

    Dendritic silver self-assembly in molten-carbonate membranes for efficient carbon dioxide capture

    Get PDF
    Membranes for CO2 capture should offer high permeant fluxes to keep membrane surface area small and material requirements low. Ag-supported, dual-phase, molten-carbonate membranes routinely demonstrate the highest CO2 fluxes in this class of membrane. However, using Ag as a support incurs high cost. Here, the non-equilibrium conditions of permeation were exploited to stimulate the self-assembly of a percolating, dendritic network of Ag from the molten carbonate. Multiple membrane support geometries and Ag incorporation methods were employed, demonstrating the generality of the approach, while X-ray micro-computed tomography confirmed that CO2 and O2 permeation stimulated self-assembly. We report the highest flux of Ag-supported molten-salt membranes to date (1.25 ml min−1 cm−2 at 650 °C) and ultrahigh permeability (9.4 × 10−11 mol m−1 s−1 Pa−1), surpassing the permeability requirement for economically-competitive post-combustion CO2 capture, all whilst reducing the membrane-volume-normalised demand for Ag by one order of magnitude

    Separation and concentration of CO2 from air using a humidity-driven molten-carbonate membrane

    Get PDF
    Separation processes are substantially more difficult when the species to be separated is highly dilute. To perform any dilute separation, thermodynamic and kinetic limitations must be overcome. Here we report a molten-carbonate membrane that can ‘pump’ CO2 from a 400 ppm input stream (representative of air) to an output stream with a higher concentration of CO2, by exploiting ambient energy in the form of a humidity difference. The substantial H2O concentration difference across the membrane drives CO2 permeation ‘uphill’ against its own concentration difference, analogous to active transport in biological membranes. The introduction of this H2O concentration difference also results in a kinetic enhancement that boosts the CO2 flux by an order of magnitude even as the CO2 input stream concentration is decreased by three orders of magnitude from 50% to 400 ppm. Computational modelling shows that this enhancement is due to the H2O-mediated formation of carriers within the molten salt that facilitate rapid CO2 transport

    M dwarfs: effective temperatures, radii and metallicities

    Full text link
    We empirically determine effective temperatures and bolometric luminosities for a large sample of nearby M dwarfs, for which high accuracy optical and infrared photometry is available. We introduce a new technique which exploits the flux ratio in different bands as a proxy of both effective temperature and metallicity. Our temperature scale for late type dwarfs extends well below 3000 K (almost to the brown dwarf limit) and is supported by interferometric angular diameter measurements above 3000 K. Our metallicities are in excellent agreement (usually within 0.2 dex) with recent determinations via independent techniques. A subsample of cool M dwarfs with metallicity estimates based on hotter Hipparcos common proper-motion companions indicates our metallicities are also reliable below 3000 K, a temperature range unexplored until now. The high quality of our data allow us to identify a striking feature in the bolometric luminosity versus temperature plane, around the transition from K to M dwarfs. We have compared our sample of stars with theoretical models and conclude that this transition is due to an increase in the radii of the M dwarfs, a feature which is not reproduced by theoretical models.Comment: 26 pages, 14 figures. Accepted by MNRAS. Landscape table available online at http://users.utu.fi/luccas/MOITE
    • 

    corecore