481 research outputs found
Sensilla-specific expression of odorant receptors in the desert locust Schistocerca gregaria
The desert locust Schistocerca gregaria recognizes multiple chemical cues, which are received by olfactory sensory neurons housed in morphologically identifiable sensilla. The different sensillum types contain olfactory sensory neurons with different physiological specificities, i.e. they respond to different categories of chemical signals. The molecular basis for the sensilla-specific responsiveness of these cells is unknown, but probably based on the endogenous receptor repertoire. To explore this issue, attempts were made to elucidate whether distinct odorant receptors (ORs) may be expressed in a sensilla-specific manner. Analyzing more than 80 OR types concerning for a sensilla-specific expression revealed that the vast majority was found to be expressed in sensilla basiconica; whereas only three OR types were expressed in sensilla trichodea. Within a sensillum unit, even in the multicellular assembly of sensilla basiconica, many of the OR types were expressed in only a single cell, however, a few OR types were found to be expressed in a consortium of cells typically arranged in a cluster of 2-4 cells. The notion that the OR-specific cell clusters are successively formed in the course of development was confirmed by comparing the expression patterns in different nymph stages. The results of this study uncover some novel and unique features of locust olfactory system, which will contribute to unravel the complexity of locust olfaction
Three-dimensional water droplet trajectory code validation using an ECS inlet geometry
A task was completed under NASA contract, the purpose of which was to validate a three-dimensional particle trajectory code with existing test data obtained from the Icing Research Tunnel at NASA-LeRC. The geometry analyzed was a flush-mounted environmental control system (ECS) inlet. Results of the study indicated good overall agreement between analytical predictions and wind tunnel test results at most flight conditions. Difficulties were encountered when predicting impingement characteristics of the droplets less than or equal to 13.5 microns in diameter. This difficulty was corrected to some degree by modifications to a module of the particle trajectory code; however, additional modifications will be required to accurately predict impingement characteristics of smaller droplets
A subset of odorant receptors from the desert locust Schistocerca gregaria is co-expressed with the sensory neuron membrane protein 1
In the desert locust Schistocerca gregaria (S. gregaria), pheromones are considered to be crucial for governing important behaviors and processes, including phase transition, reproduction, aggregation and swarm formation. The receptors mediating pheromone detection in olfactory sensory neurons (OSNs) on the antenna of S. gregaria are unknown. Since pheromone receptors in other insects belong to the odorant receptor (OR) family and are typically co-expressed with the “sensory neuron membrane protein 1” (SNMP1), in our search for putative pheromone receptors of S. gregaria, we have screened the OR repertoire for receptor types that are expressed in SNMP1-positive OSNs. Based on phylogenetic analyses, we categorized the 119 ORs of S. gregaria into three groups (I–III) and analyzed a substantial number of ORs for co-expression with SNMP1 by two-color fluorescence in situ hybridization. We have identified 33 ORs that were co-expressed with SNMP1. In fact, the majority of ORs from group I and II were found to be expressed in SNMP1-positive OSNs, but only very few receptors from group III, which comprises approximately 60% of all ORs from S. gregaria, were co-expressed with SNMP1. These findings indicate that numerous ORs from group I and II could be important for pheromone communication. Collectively, we have identified a broad range of candidate pheromone receptors in S. gregaria that are not randomly distributed throughout the OR family but rather segregate into phylogenetically distinct receptor clades
Gain control network conditions in early sensory coding
Gain control is essential for the proper function of any sensory system. However, the precise mechanisms for achieving effective gain control in the brain are unknown. Based on our understanding of the existence and strength of connections in the insect olfactory system, we analyze the conditions that lead to controlled gain in a randomly connected network of excitatory and inhibitory neurons. We consider two scenarios for the variation of input into the system. In the first case, the intensity of the sensory input controls the input currents to a fixed proportion of neurons of the excitatory and inhibitory populations. In the second case, increasing intensity of the sensory stimulus will both, recruit an increasing number of neurons that receive input and change the input current that they receive. Using a mean field approximation for the network activity we derive relationships between the parameters of the network that ensure that the overall level of activity
of the excitatory population remains unchanged for increasing intensity of the external stimulation. We find that, first, the main parameters that regulate network gain are the probabilities of connections from the inhibitory population to the excitatory population and of the connections within the inhibitory population. Second, we show that strict gain control is not achievable in a random network in the second case, when the input recruits an increasing number of neurons. Finally, we confirm that the gain control conditions derived from the mean field approximation are valid in simulations of firing rate
models and Hodgkin-Huxley conductance based models
Review Essay : Industrial Organization and Socialist Development in China
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68697/2/10.1177_009770047900500204.pd
The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells
Smell is often regarded as an ancillary perception in primates, who seem so dominated by their sense of vision. In this paper, we will portray some aspects of the significance of olfaction to human life and speculate on what evolutionary factors contribute to keeping it alive. We then outline the functional architecture of olfactory sensory neurons and their signal transduction pathways, which are the primary detectors that render olfactory perception possible. Throughout the phylogenetic tree, olfactory neurons, at their apical tip, are either decorated with cilia or with microvilli. The significance of this dichotomy is unknown. It is generally assumed that mammalian olfactory neurons are of the ciliary type only. The existance of so-called olfactory microvillar cells in mammals, however, is well documented, but their nature remains unclear and their function orphaned. This paper discusses the possibility, that in the main olfactory epithelium of mammals ciliated and microvillar sensory cells exist concurrently. We review evidence related to this hypothesis and ask, what function olfactory microvillar cells might have and what signalling mechanisms they use
Computational Model of the Insect Pheromone Transduction Cascade
A biophysical model of receptor potential generation in the male moth olfactory receptor neuron is presented. It takes into account all pre-effector processes—the translocation of pheromone molecules from air to sensillum lymph, their deactivation and interaction with the receptors, and the G-protein and effector enzyme activation—and focuses on the main post-effector processes. These processes involve the production and degradation of second messengers (IP3 and DAG), the opening and closing of a series of ionic channels (IP3-gated Ca2+ channel, DAG-gated cationic channel, Ca2+-gated Cl− channel, and Ca2+- and voltage-gated K+ channel), and Ca2+ extrusion mechanisms. The whole network is regulated by modulators (protein kinase C and Ca2+-calmodulin) that exert feedback inhibition on the effector and channels. The evolution in time of these linked chemical species and currents and the resulting membrane potentials in response to single pulse stimulation of various intensities were simulated. The unknown parameter values were fitted by comparison to the amplitude and temporal characteristics (rising and falling times) of the experimentally measured receptor potential at various pheromone doses. The model obtained captures the main features of the dose–response curves: the wide dynamic range of six decades with the same amplitudes as the experimental data, the short rising time, and the long falling time. It also reproduces the second messenger kinetics. It suggests that the two main types of depolarizing ionic channels play different roles at low and high pheromone concentrations; the DAG-gated cationic channel plays the major role for depolarization at low concentrations, and the Ca2+-gated Cl− channel plays the major role for depolarization at middle and high concentrations. Several testable predictions are proposed, and future developments are discussed
Functional Analysis of General Odorant Binding Protein 2 from the Meadow Moth, Loxostege sticticalis L. (Lepidoptera: Pyralidae)
Odorant binding proteins play a crucial role in transporting semiochemicals across the sensillum lymph to olfactory receptors within the insect antennal sensilla. In this study, the general odorant binding protein 2 gene was cloned from the antennae of Loxostege sticticalis, using reverse transcription PCR and rapid amplification of cDNA ends. Recombinant LstiGOBP2 was expressed in Escherichia coli and purified by Ni ion affinity chromatography. Real-time PCR assays indicated that LstiGOBP2 mRNA is expressed mainly in adult antennae, with expression levels differing with developmental age. Ligand-binding experiments using N-phenyl-naphthylamine (1-NPN) as a fluorescent probe demonstrated that the LstiGOBP2 protein has binding affinity to a broad range of odorants. Most importantly, trans-11-tetradecen-1-yl acetate, the pheromone component of Loxostege sticticalis, and trans-2-hexenal and cis-3-hexen-1-ol, the most abundant plant volatiles in essential oils extracted from host plants, had high binding affinities to LstiGOBP2 and elicited strong electrophysiological responses from the antennae of adults
Cross-Species Comparison of Genes Related to Nutrient Sensing Mechanisms Expressed along the Intestine
Introduction Intestinal chemosensory receptors and transporters are able to detect food-derived molecules and are involved in the modulation of gut hormone release. Gut hormones play an important role in the regulation of food intake and the control of gastrointestinal functioning. This mechanism is often referred to as “nutrient sensing”. Knowledge of the distribution of chemosensors along the intestinal tract is important to gain insight in nutrient detection and sensing, both pivotal processes for the regulation of food intake. However, most knowledge is derived from rodents, whereas studies in man and pig are limited, and cross-species comparisons are lacking. Aim To characterize and compare intestinal expression patterns of genes related to nutrient sensing in mice, pigs and humans. Methods Mucosal biopsy samples taken at six locations in human intestine (n = 40) were analyzed by qPCR. Intestinal scrapings from 14 locations in pigs (n = 6) and from 10 locations in mice (n = 4) were analyzed by qPCR and microarray, respectively. The gene expression of glucagon, cholecystokinin, peptide YY, glucagon-like peptide-1 receptor, taste receptor T1R3, sodium/glucose cotransporter, peptide transporter-1, GPR120, taste receptor T1R1, GPR119 and GPR93 was investigated. Partial least squares (PLS) modeling was used to compare the intestinal expression pattern between the three species. Results and conclusion The studied genes were found to display specific expression patterns along the intestinal tract. PLS analysis showed a high similarity between human, pig and mouse in the expression of genes related to nutrient sensing in the distal ileum, and between human and pig in the colon. The gene expression pattern was most deviating between the species in the proximal intestine. Our results give new insights in interspecies similarities and provide new leads for translational research and models aiming to modulate food intake processes in man
- …