283 research outputs found

    Spectroscopie dans l'infrarouge lointain de molécules d'intérêt astrophysique

    Get PDF
    Cette thèse a été consacrée à l étude en laboratoire plusieurs molécules d intérêt astrophysique par spectroscopie par transformation de Fourier dans l infrarouge lointain afin de montrer les possibilités offertes par cette gamme spectrale en matière de spectroscopie vibrationnelle et rotationnelle, notamment grâce à l utilisation du rayonnement synchrotron. Nous nous sommes intéressés à des molécules relativement lourdes, dérivées du naphtalène, pour lesquelles nous avons pu observer les bandes de vibrations de plus basses fréquences. Nous avons également développé différents dispositifs de décharge permettant d étudier la spectroscopie rotationnelle de molécules instables : molécules légères à haute température et radicaux de petite taille.This thesis has been dedicated to the laboratory far-infrared Fourier transform spectroscopy of several molecules of astrophysical interest in order to demonstrate the interest of this spectral region for vibrational and rotational spectroscopy, in particular using synchrotron radiation. Low frequency vibrational spectra of nine naphthalene derivatives, relatively heavy molecules, have been studied. Several discharge set-ups have also been developed in order to study rotational spectroscopy of transient species: high temperature light molecules and small radicals.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Continuous Measurements of the Free Dissolved CO 2

    Full text link

    Generalized Gibbs ensembles for time dependent processes

    Get PDF
    An information theory description of finite systems explicitly evolving in time is presented for classical as well as quantum mechanics. We impose a variational principle on the Shannon entropy at a given time while the constraints are set at a former time. The resulting density matrix deviates from the Boltzmann kernel and contains explicit time odd components which can be interpreted as collective flows. Applications include quantum brownian motion, linear response theory, out of equilibrium situations for which the relevant information is collected within different time scales before entropy saturation, and the dynamics of the expansion

    Sequence structure emission in The Red Rectangle Bands

    Full text link
    We report high resolution (R~37,000) integral field spectroscopy of the central region (r<14arcsec) of the Red Rectangle nebula surrounding HD44179. The observations focus on the 5800A emission feature, the bluest of the yellow/red emission bands in the Red Rectangle. We propose that the emission feature, widely believed to be a molecular emission band, is not a molecular rotation contour, but a vibrational contour caused by overlapping sequence bands from a molecule with an extended chromophore. We model the feature as arising in a Polycyclic Aromatic Hydrocarbon (PAH) with 45-100 carbon atoms.Comment: 13 pages, 9 figures, accepted for publication in ApJ. A version of the paper with full resolution figures is available at: http://www.aao.gov.au/local/www/rgs/Sequence-Structure

    Preferential Photosynthetic Uptake of Exogenous HCO 3

    Full text link

    Control of silver-polymer aggregation mechanism by primary particle spatial correlations in dynamic fractal-like geometry

    Full text link
    Silver nanocrystals have been prepared by reacting silver nitrate with ascorbic acid in aqueous solution containing a low concentration of a commercial polynaphtalene sulphonate polymer (Daxad 19). Various crystalline morphologies have been obtained simply by tuning the reaction temperature. We have investigated the nanoparticle formation mechanism at three different temperatures by in situ and time resolved Small Angle X ray Scattering measurements. By modeling the scattering intensity with interacting spherical particles in a fractal-like polymer-Ag matrix, we found signatures of nucleation, growth and assembly of primary particles of about 15-20 nm. We observed how the time evolution of both spatial correlations between primary particles and the dynamic fractal geometry of the polymer-Ag matrix could influence and determine both the aggregation mechanism and the morphology of forming nanostructures in solution

    Formalism of collective electron excitations in fullerenes

    Full text link
    We present a detailed formalism for the description of collective electron excitations in fullerenes in the process of the electron inelastic scattering. Considering the system as a spherical shell of a finite width, we show that the differential cross section is defined by three plasmon excitations, namely two coupled modes of the surface plasmon and the volume plasmon. The interplay of the three plasmons appears due to the electron diffraction of the fullerene shell. Plasmon modes of different angular momenta provide dominating contributions to the differential cross section depending on the transferred momentum.Comment: 11 pages, 2 figures; submitted to the special issue "Atomic Cluster Collisions: Structure and Dynamics from the Nuclear to the Biological Scale" of Eur. Phys. J.

    Formalism for Multiphoton Plasmon Excitation in Jellium Clusters

    Full text link
    We present a new formalism for the description of multiphoton plasmon excitation processes in jellium clusters. By using our method, we demonstrate that, in addition to dipole plasmon excitations, the multipole plasmons (quadrupole, octupole, etc) can be excited in a cluster by multiphoton absorption processes, which results in a significant difference between plasmon resonance profiles in the cross sections for multiphoton as compared to single-photon absorption. We calculate the cross sections for multiphoton absorption and analyse the balance between the surface and volume plasmon contributions to multipole plasmons.Comment: 29 pages, 1 figur

    When a duck is not a duck; a new interdisciplinary synthesis for environmental radiation protection

    Get PDF
    This consensus paper presents the results of a workshop held in Essen, Germany in September 2017, called to examine critically the current approach to radiological environmental protection. The meeting brought together participants from the field of low dose radiobiology and those working in radioecology. Both groups have a common aim of identifying radiation exposures and protecting populations and individuals from harmful effects of ionising radiation exposure, but rarely work closely together. A key question in radiobiology is to understand mechanisms triggered by low doses or dose rates, leading to adverse outcomes of individuals while in radioecology a key objective is to recognise when harm is occurring at the level of the ecosystem. The discussion provided a total of six strategic recommendations which would help to address these questions.Funding was provided for this workshop by the International Union for Radioecology and the University of Duisburg-Essen
    • …
    corecore