90 research outputs found

    Synthesis, in Vitro Profiling, and in Vivo Evaluation of Benzohomoadamantane-Based Ureas for Visceral Pain: A New Indication for Soluble Epoxide Hydrolase Inhibitors

    Get PDF
    The soluble epoxide hydrolase (sEH) has been suggested as a pharmacological target for the treatment of several diseases, including pain-related disorders. Herein, we report further medicinal chemistry around new benzohomoadamantane-based sEH inhibitors (sEHI) in order to improve the drug metabolism and pharmacokinetics properties of a previous hit. After an extensive in vitro screening cascade, molecular modeling, and in vivo pharmacokinetics studies, two candidates were evaluated in vivo in a murine model of capsaicin-induced allodynia. The two compounds showed an anti-allodynic effect in a dose-dependent manner. Moreover, the most potent compound presented robust analgesic efficacy in the cyclophosphamide-induced murine model of cystitis, a well-established model of visceral pain. Overall, these results suggest painful bladder syndrome as a new possible indication for sEHI, opening a new range of applications for them in the visceral pain field

    Assessment of a New ROS1 Immunohistochemistry Clone (SP384) for the Identification of ROS1 Rearrangements in Patients with Non–Small Cell Lung Carcinoma: the ROSING Study

    Get PDF
    Introduction: The ROS1 gene rearrangement has become an important biomarker in NSCLC. The College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology testing guidelines support the use of ROS1 immunohistochemistry (IHC) as a screening test, followed by confirmation with fluorescence in situ hybridization (FISH) or a molecular test in all positive results. We have evaluated a novel anti-ROS1 IHC antibody (SP384) in a large multicenter series to obtain real-world data. Methods: A total of 43 ROS1 FISH-positive and 193 ROS1 FISH-negative NSCLC samples were studied. All specimens were screened by using two antibodies (clone D4D6 from Cell Signaling Technology and clone SP384 from Ventana Medical Systems), and the different interpretation criteria were compared with break-apart FISH (Vysis). FISH-positive samples were also analyzed with next-generation sequencing (Oncomine Dx Target Test Panel, Thermo Fisher Scientific). Results: An H-score of 150 or higher or the presence of at least 70% of tumor cells with an intensity of staining of 2+ or higher by the SP384 clone was the optimal cutoff value (both with 93% sensitivity and 100% specificity). The D4D6 clone showed similar results, with an H-score of at least 100 (91% sensitivity and 100% specificity). ROS1 expression in normal lung was more frequent with use of the SP384 clone (p < 0.0001). The ezrin gene (EZR)-ROS1 variant was associated with membranous staining and an isolated green signal FISH pattern (p = 0.001 and p = 0.017, respectively). Conclusions: The new SP384 ROS1 IHC clone showed excellent sensitivity without compromising specificity, so it is another excellent analytical option for the proposed testing algorithm

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Nutrient mineralization rates and ratios in the eastern South Atlantic

    Get PDF
    42 pages, 10 figures, 4 tables.-- Pdf at Archimer http://www.ifremer.fr/docelec/ (Archive Institutionnelle de l’Ifremer)The physical and biogeochemical components of nutrients and inorganic carbon distributions along WOCE line A14 are objectively separated by means of a constrained least-squares regression analysis of the mixing of eastern South Atlantic water masses. Contrary to previous approaches, essentially devoted to the intricate South Atlantic circulation, this work is focused on the effects of circulation on nutrients and carbon biogeochemistry, with special emphasis on the stoichiometry and the rate of mineralization processes. Combination of nutrient and apparent CFC-age anomalies, derived from the mixing analysis, indicate faster mineralization rates in the equatorial (12 × 10−2 μmol P kg−1 yr−1) and subequatorial (5.3 × 10−2 μmol P kg−1 yr−1) than in the subtropical (4.3 × 10−2 μmol P kg−1 yr−1) regime at the South Atlantic Central Water (SACW) depth range. Lower rates are obtained in the Antarctic Intermediate Water (AAIW) domain (3.0 × 10−2 μmol P kg−1 yr−1). Significant variation with depth of O2/C/N/P anomalies indicates preferential mineralization of proteins in thermocline waters, as compared with the reference Redfield composition.Financial support from this work came from the Spanish ‘Comisión Interministerial de Ciencia y Tecnología (CICYT)’, contract No. ANT94–1168–E, and from the ‘Institut Français de Recherche pour l’exploitation de la Mer (IFREMER)’, contract No 94 1430 087.Peer reviewe

    Cerebellar ataxia with coenzyme Q10 deficiency: Diagnosis and follow-up after coenzyme Q10 supplementation

    No full text
    Our aim was to report a new case with cerebellar ataxia associated with coenzyme Q10 (CoQ) deficiency, the biochemical findings caused by this deficiency and the response to CoQ supplementation. [Patient]: A 12-year-old girl presenting ataxia and cerebellar atrophy. [Biochemical studies]: Coenzyme Q10 in muscle was analysed by HPLC with electrochemical detection and mitochondrial respiratory chain (MRC) enzyme activities by spectrophotometric methods. CoQ biosynthesis in fibroblasts was assayed by studying the incorporation of radiolabeled 4-hydroxy[U-14C] benzoic acid by HPLC with radiometric detection. [Results]: Mitochondrial respiratory chain enzyme analysis showed a decrease in complex I + III and complex II + III activities. CoQ concentration in muscle was decreased (56 nmol/g of protein: reference values: 157-488 nmol/g protein). A reduced incorporation of radiolabeled 4-hydroxy[U-14C] benzoic acid was observed in the patient (19% of incorporation respect to the median control values). After 16 months of CoQ supplementation, the patient is now able to walk unaided and cerebellar signs have disappeared. [Conclusions]: Cerebellar ataxia associated with CoQ deficiency in our case might be allocated in the transprenylation pathway or in the metabolic steps after condensation of 4-hydroxybenzoate and the prenyl side chain of CoQ. Clinical improvement after CoQ supplementation was remarkable, supporting the importance of an early diagnosis of this kind of disorders.This study was supported by the grants Mitoespaña (G03/011), Red de Ataxias (G03/056) and PI040567 from the FIS, Ministerio de Sanidad, Spain; and by EU contract LSHB-CT-2004-005151

    Granulocyte colony-stimulating factor in the treatment of high-risk febrile neutropenia: a multicenter randomized trial.

    No full text
    Presented in part at the 35th American Society of Clinical Oncology meeting. Atlanta (GA); 1999. Clinical Trial; Journal Article; Multicenter Study; Randomized Controlled Trial; Research Support, Non-U.S. Gov't;BACKGROUND Granulocyte colony-stimulating factors (G-CSFs) have been shown to help prevent febrile neutropenia in certain subgroups of cancer patients undergoing chemotherapy, but their role in treating febrile neutropenia is controversial. The purpose of our study was to evaluate-in a prospective multicenter randomized clinical trial-the efficacy of adding G-CSF to broad-spectrum antibiotic treatment of patients with solid tumors and high-risk febrile neutropenia. METHODS A total of 210 patients with solid tumors treated with conventional-dose chemotherapy who presented with fever and grade IV neutropenia were considered to be eligible for the trial. They met at least one of the following high-risk criteria: profound neutropenia (absolute neutrophil count <100/mm(3)), short latency from previous chemotherapy cycle (<10 days), sepsis or clinically documented infection at presentation, severe comorbidity, performance status of 3-4 (Eastern Cooperative Oncology Group scale), or prior inpatient status. Eligible patients were randomly assigned to receive the antibiotics ceftazidime and amikacin, with or without G-CSF (5 microg/kg per day). The primary study end point was the duration of hospitalization. All P values were two-sided. RESULTS Patients randomly assigned to receive G-CSF had a significantly shorter duration of grade IV neutropenia (median, 2 days versus 3 days; P = 0.0004), antibiotic therapy (median, 5 days versus 6 days; P = 0.013), and hospital stay (median, 5 days versus 7 days; P = 0.015) than patients in the control arm. The incidence of serious medical complications not present at the initial clinical evaluation was 10% in the G-CSF group and 17% in the control group (P = 0.12), including five deaths in each study arm. The median cost of hospital stay and the median overall cost per patient admission were reduced by 17% (P = 0.01) and by 11% (P = 0.07), respectively, in the G-CSF arm compared with the control arm. CONCLUSIONS Adding G-CSF to antibiotic therapy shortens the duration of neutropenia, reduces the duration of antibiotic therapy and hospitalization, and decreases hospital costs in patients with high-risk febrile neutropenia.Ye

    Synthesis, In Vitro Profiling, and In Vivo Evaluation of Benzohomoadamantane-Based Ureas for Visceral Pain: A New Indication for Soluble Epoxide Hydrolase Inhibitors

    Get PDF
    The soluble epoxide hydrolase (sEH) has been suggested as a pharmacological target for the treatment of several diseases, including pain-related disorders. Herein, we report further medicinal chemistry around new benzohomoadamantane-based sEH inhibitors (sEHI) in order to improve the drug metabolism and pharmacokinetics properties of a previous hit. After an extensive in vitro screening cascade, molecular modeling, and in vivo pharmacokinetics studies, two candidates were evaluated in vivo in a murine model of capsaicin-induced allodynia. The two compounds showed an anti-allodynic effect in a dose-dependent manner. Moreover, the most potent compound presented robust analgesic efficacy in the cyclophosphamide-induced murine model of cystitis, a well-established model of visceral pain. Overall, these results suggest painful bladder syndrome as a new possible indication for sEHI, opening a new range of applications for them in the visceral pain field
    corecore