53 research outputs found

    La era de la imagen electrónica

    Get PDF

    Amantadine variant - aryl conjugates that inhibit multiple M2 mutant - amantadine resistant influenza a viruses

    Full text link
    Influenza A viruses can cause a serious future threat due to frequent mutations. Amantadine and rimantadine inhibit influenza A M2 wild-type (WT) viruses by binding and blocking M2 WT channel-mediated proton current. The resistant to the drugs amantadine and rimantadine influenza A viruses bearing the S31 N mutant in the M2 proton channel can be inhibited by amantadine - aryl conjugates, in which amantadine and an aryl group are linked through a methylene, which block M2 S31 N channel-mediated proton current. However, the M2 amantadine/rimantadine resistant viruses bearing one of the four mutations L26F, V27A, A30T, G34E in residues that line the M2 protein pore pose an additional concern for public health. Here, we designed 33 compounds based on the structure of three previously published and potent amantadine-aryl conjugates against M2 S31 N virus, by replacing amantadine with 16 amantadine variants. The compounds were tested against M2 WT and the five M2 amantadine-resistant viruses aiming at identifying inhibitors against multiple M2 mutant - amantadine resistant viruses. We identified 16 compounds that inhibited in vitro two influenza A viruses with M2 WT or L26F channels. Additionally, compounds 21 or 32 or 33, which are conjugates of the rimantadine variant with CMe2 (instead of CHMe in rimantadine) or the diamantylamine or the 4-(1-adamantyl)benzenamine with the 2-hydroxy-4-methoxyphenyl aryl group, were in vitro inhibitors against three influenza A viruses with M2 WT or L26F or S31 N, while compound 21 inhibited also in vitro the M2 G34E virus and 32 inhibited also in vitro the M2 A30T virus. For these compounds we performed a preliminary drug metabolism and pharmacokinetics study. Also, using electrophysiology, we showed that compound 21 was an efficient blocker of the M2 WT and M2 L26F channels, compound 32 blocked efficiently the M2 WT channel and compound 33 blocked the M2 WT, L26F and V27A channels. The drug metabolism and pharmacokinetics studies showed these compounds need further optimization

    Computer-Aided Structure-Based Design of Multitarget Leads for Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease is a neurodegenerative pathology with unmet clinical needs. A highly desirable approach to this syndrome would be to find a single lead that could bind to some or all of the selected biomolecules that participate in the amyloid cascade, the most accepted route for Alzheimer disease genesis. In order to circumvent the challenge posed by the sizable differences in the binding sites of the molecular targets, we propose a computer-assisted protocol based on a pharmacophore and a set of required interactions with the targets that allows for the automated screening of candidates. We used a combination of docking and molecular dynamics protocols in order to discard nonbinders, optimize the best candidates, and provide a rationale for their potential as inhibitors. To provide a proof of concept, we proceeded to screen the literature and databases, a task that allowed us to identify a set of carbazole-containing compounds that initially showed affinity only for the cholinergic targets in our experimental assays. Two cycles of design based on our protocol led to a new set of analogues that were synthesized and assayed. The assay results revealed that the designed inhibitors had improved affinities for BACE-1 by more than 3 orders of magnitude and also displayed amyloid aggregation inhibition and affinity for AChE and BuChE, a result that led us to a group of multitarget amyloid cascade inhibitors that also could have a positive effect at the cholinergic levelFinancial support from the Ministerio de Economia y Competitividad of Spain (Project CTQ2011-22436) and the Xunta de Galicia (CN2011/047 and 10CSA209063PR) is gratefully acknowledgedS

    A Novel NMDA Receptor Antagonist Protects against Cognitive Decline Presented by Senescent Mice

    Get PDF
    Alzheimer’s disease (AD) is the leading cause of dementia. Non-competitive N-Methyl-D-aspartate (NMDA) receptor antagonist memantine improved cognition and molecular alterations after preclinical treatment. Nevertheless, clinical results are discouraging. In vivo efficacy of the RL-208, a new NMDA receptor blocker described recently, with favourable pharmacokinetic properties was evaluated in Senescence accelerated mice prone 8 (SAMP8), a mice model of late-onset AD (LOAD). Oral administration of RL-208 improved cognitive performance assessed by using the three chamber test (TCT), novel object recognition test (NORT), and object location test (OLT). Consistent with behavioural results, RL-208 treated-mice groups significantly changed NMDAR2B phosphorylation state levels but not NMDAR2A. Calpain-1 and Caspase-3 activity was reduced, whereas B-cell lymphoma-2 (BCL-2) levels increased, indicating reduced apoptosis in RL-208 treated SAMP8. Superoxide Dismutase 1 (SOD1) and Glutathione Peroxidase 1 (GPX1), as well as a reduction of hydrogen peroxide (H2O2), was also determined in RL-208 mice. RL-208 treatment induced an increase in mature brain-derived neurotrophic factor (mBDNF), prevented Tropomyosin-related kinase B full-length (TrkB-FL) cleavage, increased protein levels of Synaptophysin (SYN) and Postsynaptic density protein 95 (PSD95). In whole, these results point out to an improvement in synaptic plasticity. Remarkably, RL-208 also decreased the protein levels of Cyclin-Dependent Kinase 5 (CDK5), as well as p25/p35 ratio, indicating a reduction in kinase activity of CDK5/p25 complex. Consequently, lower levels of hyperphosphorylated Tau (p-Tau) were found. In sum, these results demonstrate the neuroprotectant role of RL-208 through NMDAR blockadeThis research was funded by Ministerio de Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and Fondo Europeo de Desarrollo Regional (MINECO-FEDER) (Projects SAF2017-82771-R, SAF2016-77703, SAF2015-68749 and SAF2017-90913), Xunta de Galicia (ED431C 2018/21) and Generalitat de Catalunya (2017 SGR 106)S

    8‐Aminomethyl‐7‐hydroxy‐4‐methylcoumarins as Multitarget Leads for Alzheimer's Disease

    Get PDF
    This is the peer reviewed version of the following article: Domínguez, J., Fernández-Nieto, F., Brea, J., Catto, M., Paleo, M., & Porto, S. et al. (2016). 8-Aminomethyl-7-hydroxy-4-methylcoumarins as Multitarget Leads for Alzheimer's Disease. Chemistryselect, 1(11), 2742-2749, which has been published in final form at https://doi.org/10.1002/slct.201600735. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived VersionsThis work is part of our ongoing research in the discovery of multitarget therapeutic agents for Alzheimer's disease (AD). A literature screening, based on our recently proposed pharmacophore, led to the identification of 8‐aminomethyl‐7‐hydroxy‐4‐methyl coumarins as potential multitarget leads for AD. The results of a computer‐assisted protocol developed by us to validate multitarget hits for AD indicated that our coumarin candidates were viable leads only for AChE inhibition as later validated by biological assays. The results of BChE binding and propidium displacement assays indicate that our first generation compounds bind to the PAS site in AChE. We designed new generations of coumarin derivatives with a longer substituent at position 8 aimed at leads with more efficient interaction at the catalytic anionic site (CAS). Inhibition data and docking simulations indicated that an anilino‐capping group reached the CAS region of AChE and determined also a higher inhibitory potency towards BChE. The best compound obtained, with a N‐benzylpiperidine fragment, displayed sub‐micromolar affinity for AChE, affinity for BChE, and precluded Aβ‐amyloid aggregation with a potency similar to that of 9,10‐anthraquinone, making it a multitarget lead viable for further improvementFinancial support from the Ministerio de Economia y Competitividad of Spain (Project CTQ2014‐55208‐P) and the Xunta de Galicia (10CSA209063PR and GRC2014/029) is gratefully acknowledged. The Italian authors thank the University of Bari for partial financial support (Fondi di Ateneo 2014–2015)S

    A Novel NMDA Receptor Antagonist Protects against Cognitive Decline Presented by Senescent Mice

    Get PDF
    Alzheimer's disease (AD) is the leading cause of dementia. Non-competitive N-Methyl-D-aspartate (NMDA) receptor antagonist memantine improved cognition and molecular alterations after preclinical treatment. Nevertheless, clinical results are discouraging. In vivo e cacy of the RL-208, a new NMDA receptor blocker described recently, with favourable pharmacokinetic properties was evaluated in Senescence accelerated mice prone 8 (SAMP8), a mice model of late-onset AD (LOAD). Oral administration of RL-208 improved cognitive performance assessed by using the three chamber test (TCT), novel object recognition test (NORT), and object location test (OLT). Consistent with behavioural results, RL-208 treated-mice groups significantly changed NMDAR2B phosphorylation state levels but not NMDAR2A. Calpain-1 and Caspase-3 activity was reduced, whereas B-cell lymphoma-2 (BCL-2) levels increased, indicating reduced apoptosis in RL-208 treated SAMP8. Superoxide Dismutase 1 (SOD1) and Glutathione Peroxidase 1 (GPX1), as well as a reduction of hydrogen peroxide (H2O2), was also determined in RL-208 mice. RL-208 treatment induced an increase in mature brain-derived neurotrophic factor (mBDNF), prevented Tropomyosin-related kinase B full-length (TrkB-FL) cleavage, increased protein levels of Synaptophysin (SYN) and Postsynaptic density protein 95 (PSD95). In whole, these results point out to an improvement in synaptic plasticity. Remarkably, RL-208 also decreased the protein levels of Cyclin-Dependent Kinase 5 (CDK5), as well as p25/p35 ratio, indicating a reduction in kinase activity of CDK5/p25 complex. Consequently, lower levels of hyperphosphorylated Tau (p-Tau) were found. In sum, these results demonstrate the neuroprotectant role of RL-208 through NMDAR blockade

    Synthesis, in Vitro Profiling, and in Vivo Evaluation of Benzohomoadamantane-Based Ureas for Visceral Pain: A New Indication for Soluble Epoxide Hydrolase Inhibitors

    Get PDF
    The soluble epoxide hydrolase (sEH) has been suggested as a pharmacological target for the treatment of several diseases, including pain-related disorders. Herein, we report further medicinal chemistry around new benzohomoadamantane-based sEH inhibitors (sEHI) in order to improve the drug metabolism and pharmacokinetics properties of a previous hit. After an extensive in vitro screening cascade, molecular modeling, and in vivo pharmacokinetics studies, two candidates were evaluated in vivo in a murine model of capsaicin-induced allodynia. The two compounds showed an anti-allodynic effect in a dose-dependent manner. Moreover, the most potent compound presented robust analgesic efficacy in the cyclophosphamide-induced murine model of cystitis, a well-established model of visceral pain. Overall, these results suggest painful bladder syndrome as a new possible indication for sEHI, opening a new range of applications for them in the visceral pain field

    Age-dependent impact of two exercise training regimens on genomic and metabolic remodeling in skeletal muscle and liver of male mice

    Get PDF
    Skeletal muscle adapts to different exercise training modalities with age; however, the impact of both variables at the systemic and tissue levels is not fully understood. Here, adult and old C57BL/6 male mice were assigned to one of three groups: sedentary, daily high-intensity intermittent training (HIIT), or moderate intensity continuous training (MICT) for 4 weeks, compatible with the older group’s exercise capacity. Improvements in body composition, fasting blood glucose, and muscle strength were mostly observed in the MICT old group, while effects of HIIT training in adult and old animals was less clear. Skeletal muscle exhibited structural and functional adaptations to exercise training, as revealed by electron microscopy, OXPHOS assays, respirometry, and muscle protein biomarkers. Transcriptomics analysis of gastrocnemius muscle combined with liver and serum metabolomics unveiled an age-dependent metabolic remodeling in response to exercise training. These results support a tailored exercise prescription approach aimed at improving health and ameliorating age-associated loss of muscle strength and function in the elderly.This work was supported by funding from the Intramural Research Program of the National Institute on Aging/NIH. Work in JMV laboratory was supported by the Spanish Ministerio de Economía y Competitividad (MINECO) grant BFU2015-64630-R, Ministerio de Ciencia, Innovación y Universidades (MICIU) grant RTI2018-100695-B-I00, Spanish Junta de Andalucía grants P18-RT-4264, 1263735-R and BIO-276, the FEDER Funding Program from the European Union, and Universidad de Córdoba. MCR was supported by a FPU fellowship from the Spanish Ministerio de Educación, Cultura y Deporte (reference FPU14/06308). SRL held a FPI predoctoral contract funded by MINECO (reference BES-2016-078229).Peer reviewe

    Cell Survival from Chemotherapy Depends on NF-κB Transcriptional Up-Regulation of Coenzyme Q Biosynthesis

    Get PDF
    9 pages and 6 figures.[Background] Coenzyme Q (CoQ) is a lipophilic antioxidant that is synthesized by a mitochondrial complex integrated by at least ten nuclear encoded COQ gene products. CoQ increases cell survival under different stress conditions, including mitochondrial DNA (mtDNA) depletion and treatment with cancer drugs such as camptothecin (CPT). We have previously demonstrated that CPT induces CoQ biosynthesis in mammal cells.[Methodology/Principal Findings] CPT activates NF-κB that binds specifically to two κB binding sites present in the 5′-flanking region of the COQ7 gene. This binding is functional and induces both the COQ7 expression and CoQ biosynthesis. The inhibition of NF-κB activation increases cell death and decreases both, CoQ levels and COQ7 expression induced by CPT. In addition, using a cell line expressing very low of NF-κB, we demonstrate that CPT was incapable of enhancing enhance both CoQ biosynthesis and COQ7 expression in these cells.[Conclusions/Significance] We demonstrate here, for the first time, that a transcriptional mechanism mediated by NF-κB regulates CoQ biosynthesis. This finding contributes new data for the understanding of the regulation of the CoQ biosynthesis pathway.This work was supported by spanish Ministerio de Educacion y Ciencia Grant BFU2005-03017.Peer reviewe

    2-(Fluoromethoxy)-4′-(S-methanesulfonimidoyl)-1,1′-biphenyl (UCM-1306), an Orally Bioavailable Positive Allosteric Modulator of the Human Dopamine D1 Receptor for Parkinson’s Disease

    Get PDF
    Tolerance development caused by dopamine replacement with L-DOPA and therapeutic drawbacks upon activation of dopaminergic receptors with orthosteric agonists reveal a significant unmet need for safe and effective treatment of Parkinson’s disease. In search for selective modulators of the D1 receptor, the screening of a chemical library and subsequent medicinal chemistry program around an identified hit resulted in new synthetic compound 26 [UCM-1306, 2-(fluoromethoxy)-4′- (S-methanesulfonimidoyl)-1,1′-biphenyl] that increases the dopamine maximal effect in a dose-dependent manner in human and mouse D1 receptors, is inactive in the absence of dopamine, modulates dopamine affinity for the receptor, exhibits subtype selectivity, and displays low binding competition with orthosteric ligands. The new allosteric modulator potentiates cocaine-induced locomotion and enhances L-DOPA recovery of decreased locomotor activity in reserpinized mice after oral administration. The behavior of compound 26 supports the interest of a positive allosteric modulator of the D1 receptor as a promising therapeutic approach for Parkinson’s disease
    corecore