1,808 research outputs found

    Entropy inequalities and Bell inequalities for two-qubit systems

    Get PDF
    Sufficient conditions for (the non-violation of) the Bell-CHSH inequalities in a mixed state of a two-qubit system are: 1) The linear entropy of the state is not smaller than 0.5, 2) The sum of the conditional linear entropies is non-negative, 3) The von Neumann entropy is not smaller than 0.833, 4) The sum of the conditional von Neumann entropies is not smaller than 0.280.Comment: Errors corrected. See L. Jakobcyk, quant-ph/040908

    Containing epidemic outbreaks by message-passing techniques

    Get PDF
    The problem of targeted network immunization can be defined as the one of finding a subset of nodes in a network to immunize or vaccinate in order to minimize a tradeoff between the cost of vaccination and the final (stationary) expected infection under a given epidemic model. Although computing the expected infection is a hard computational problem, simple and efficient mean-field approximations have been put forward in the literature in recent years. The optimization problem can be recast into a constrained one in which the constraints enforce local mean-field equations describing the average stationary state of the epidemic process. For a wide class of epidemic models, including the susceptible-infected-removed and the susceptible-infected-susceptible models, we define a message-passing approach to network immunization that allows us to study the statistical properties of epidemic outbreaks in the presence of immunized nodes as well as to find (nearly) optimal immunization sets for a given choice of parameters and costs. The algorithm scales linearly with the size of the graph and it can be made efficient even on large networks. We compare its performance with topologically based heuristics, greedy methods, and simulated annealing

    Improving teleportation of continuous variables by local operations

    Full text link
    We study a continuous-variable (CV) teleportation protocol based on a shared entangled state produced by the quantum-nondemolition (QND) interaction of two vacuum states. The scheme utilizes the QND interaction or an unbalanced beam splitter in the Bell measurement. It is shown that in the non-unity gain regime the signal transfer coefficient can be enhanced while the conditional variance product remains preserved by applying appropriate local squeezing operation on sender's part of the shared entangled state. In the unity gain regime it is demonstrated that the fidelity of teleportation can be increased with the help of the local squeezing operations on parts of the shared entangled state that convert effectively our scheme to the standard CV teleportation scheme. Further, it is proved analytically that such a choice of the local symplectic operations minimizes the noise by which the mean number of photons in the input state is increased during the teleportation. Finally, our analysis reveals that the local symplectic operation on sender's side can be integrated into the Bell measurement if the interaction constant of the interaction in the Bell measurement can be adjusted properly.Comment: 10 pages, 1 figure, discussion of the non-unity gain teleportation is adde

    Optimizing spread dynamics on graphs by message passing

    Full text link
    Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the last decades, many efforts have been devoted to understand the typical behaviour of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception of models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network).Comment: Replacement for "The Spread Optimization Problem

    Broadband teleportation

    Get PDF
    Quantum teleportation of an unknown broadband electromagnetic field is investigated. The continuous-variable teleportation protocol by Braunstein and Kimble [Phys. Rev. Lett. {\bf 80}, 869 (1998)] for teleporting the quantum state of a single mode of the electromagnetic field is generalized for the case of a multimode field with finite bandwith. We discuss criteria for continuous-variable teleportation with various sets of input states and apply them to the teleportation of broadband fields. We first consider as a set of input fields (from which an independent state preparer draws the inputs to be teleported) arbitrary pure Gaussian states with unknown coherent amplitude (squeezed or coherent states). This set of input states, further restricted to an alphabet of coherent states, was used in the experiment by Furusawa {\it et al.} [Science {\bf 282}, 706 (1998)]. It requires unit-gain teleportation for optimizing the teleportation fidelity. In our broadband scheme, the excess noise added through unit-gain teleportation due to the finite degree of the squeezed-state entanglement is just twice the (entanglement) source's squeezing spectrum for its ``quiet quadrature.'' The teleportation of one half of an entangled state (two-mode squeezed vacuum state), i.e., ``entanglement swapping,'' and its verification are optimized under a certain nonunit gain condition. We will also give a broadband description of this continuous-variable entanglement swapping based on the single-mode scheme by van Loock and Braunstein [Phys. Rev. A {\bf 61}, 10302 (2000)]Comment: 27 pages, 7 figures, revised version for publication, Physical Review A (August 2000); major changes, in parts rewritte

    Continuous Variable Quantum Cryptography using Two-Way Quantum Communication

    Full text link
    Quantum cryptography has been recently extended to continuous variable systems, e.g., the bosonic modes of the electromagnetic field. In particular, several cryptographic protocols have been proposed and experimentally implemented using bosonic modes with Gaussian statistics. Such protocols have shown the possibility of reaching very high secret-key rates, even in the presence of strong losses in the quantum communication channel. Despite this robustness to loss, their security can be affected by more general attacks where extra Gaussian noise is introduced by the eavesdropper. In this general scenario we show a "hardware solution" for enhancing the security thresholds of these protocols. This is possible by extending them to a two-way quantum communication where subsequent uses of the quantum channel are suitably combined. In the resulting two-way schemes, one of the honest parties assists the secret encoding of the other with the chance of a non-trivial superadditive enhancement of the security thresholds. Such results enable the extension of quantum cryptography to more complex quantum communications.Comment: 12 pages, 7 figures, REVTe

    Bose-Einstein condensates in a double well: mean-field chaos and multi-particle entanglement

    Full text link
    A recent publication [Phys. Rev. Lett. 100, 140408 (2008)] shows that there is a relation between mean-field chaos and multi-particle entanglement for BECs in a periodically shaken double well. 'Schrodinger-cat' like mesoscopic superpositions in phase-space occur for conditions for which the system displays mean-field chaos. In the present manuscript, more general highly-entangled states are investigated. Mean-field chaos accelerates the emergence of multi-particle entanglement; the boundaries of stable regions are particularly suited for entanglement generation.Comment: 5 Pages, 5 jpg-figures, to be published in the proceedings of the LPHYS0

    Slow epidemic extinction in populations with heterogeneous infection rates

    Get PDF
    We explore how heterogeneity in the intensity of interactions between people affects epidemic spreading. For that, we study the susceptible-infected-susceptible model on a complex network, where a link connecting individuals ii and jj is endowed with an infection rate βij=λwij\beta_{ij} = \lambda w_{ij} proportional to the intensity of their contact wijw_{ij}, with a distribution P(wij)P(w_{ij}) taken from face-to-face experiments analyzed in Cattuto et  al.et\;al. (PLoS ONE 5, e11596, 2010). We find an extremely slow decay of the fraction of infected individuals, for a wide range of the control parameter λ\lambda. Using a distribution of width aa we identify two large regions in the aλa-\lambda space with anomalous behaviors, which are reminiscent of rare region effects (Griffiths phases) found in models with quenched disorder. We show that the slow approach to extinction is caused by isolated small groups of highly interacting individuals, which keep epidemic alive for very long times. A mean-field approximation and a percolation approach capture with very good accuracy the absorbing-active transition line for weak (small aa) and strong (large aa) disorder, respectively

    Optical implementation and entanglement distribution in Gaussian valence bond states

    Full text link
    We study Gaussian valence bond states of continuous variable systems, obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of NN sites of an harmonic chain. The entanglement distribution in Gaussian valence bond states can be controlled by varying the input amount of entanglement engineered in a (2M+1)-mode Gaussian state known as the building block, which is isomorphic to the projector applied at a given site. We show how this mechanism can be interpreted in terms of multiple entanglement swapping from the chain of ancillary bonds, through the building blocks. We provide optical schemes to produce bisymmetric three-mode Gaussian building blocks (which correspond to a single bond, M=1), and study the entanglement structure in the output Gaussian valence bond states. The usefulness of such states for quantum communication protocols with continuous variables, like telecloning and teleportation networks, is finally discussed.Comment: 15 pages, 6 figures. To appear in Optics and Spectroscopy, special issue for ICQO'2006 (Minsk). This preprint contains extra material with respect to the journal versio

    Constraint optimization and landscapes

    Full text link
    We describe an effective landscape introduced in [1] for the analysis of Constraint Satisfaction problems, such as Sphere Packing, K-SAT and Graph Coloring. This geometric construction reexpresses these problems in the more familiar terms of optimization in rugged energy landscapes. In particular, it allows one to understand the puzzling fact that unsophisticated programs are successful well beyond what was considered to be the `hard' transition, and suggests an algorithm defining a new, higher, easy-hard frontier.Comment: Contribution to STATPHYS2
    corecore