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Sufficient conditions for the nonviolation of the Bell-Clauser-Horne-Shimony-Holt inequalities in a mixed
state of a two-qubit system argl) the linear entropy of the state is not smaller than 0.48ythe sum of the
conditional linear entropies is not smaller tha0.086;(3) the von Neumann entropy is not smaller than 0.833;
and(4) the sum of the conditional von Neumann entropies is not smaller than 0.280.
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I. INTRODUCTION
P:; Wip1kP2k, @k=>0, ; wi=1, 3

As is well known, entangled quantum states give rise to
most counterintuitive features. For instance, in classicalvhere p;, (p,) are density matrices of the firésecond
physics, as well as in all other branches of science excemubsystem. If we put Eq3) into Eq.(2) we get, using well-
guantum mechanics, complete knowledge of a compositknown properties of the density matrices,
system requires knowledge of every one of its parts. Indeed
this is a common definition of “complete knowledge.” In Si=1—2, > WW, Try(pakpr) Tra( pokpar)
sharp contrast, in quantum mechanics if we know that two kol
particles are in a state of zero total spin, our knowledge about
the spin of the system. is complete, the quantum ;tat_e_ being ;1_2 2 WiW, Tri(pip)
pure, but we have no information at all about the individual kool

spin of each particle. If the€lack of) information about a 2

system consisting of two subsystems is formalized by means = 1—Tr1{(2 Wkplk) }

of the Shannon entrop;,, and the information about the

first (second subsystem byS; (S,), the above-mentioned =S,

characteristic of classical information implies the fulfilment _ _ _ .
of the entropy inequalities where Ti(Tr,) is the trace in the Hilbert space of the first

(secondl subsystem, and the inequality derives from
Tro(porp2) < 1. This completes the proof that separability is

a sufficient condition for the fulfilment of Eq1) for quan-

_ _ tum linear entropy. Thus the entropy inequalities give a par-
which mean that the ignorance about the whole cannot bgy| characterization of entanglement, partial because separa-
smaller than the ignorance about a part. In the rest of thigjjity, although sufficient, is not necessary for the fulfilment
paper we shall name El) “entropy inequalities.” of the inequalities.

In quantum mechanics several definitions of entropy have Another method for the characterization of nonclassical
been proposed with the property that the inequalities analostates of physical systems or, more specifically, to discover
gous to Eq(1) are violated in some cases, e.g., in the singletwvhether two distant physical systems are entangled is the use
spin state mentioned abou&or a review of quantum entro- of Bell’s inequalities. They have the advantage of connecting
pies see Vedrdll] and references therejrThe most popular quantities which may be measured, at least in principle. As is
quantum entropy is due to von Neumann, but the moswell known, the violation of a Bell inequality is a sufficient
simple one is the so-called linear entropy which, for a systengondition for entanglemerihonseparability The more gen-

$1,=51,51,=S;, (1)

consisting of two subsystems, is defined as eral theoretical question of fully characterizing quantum
states compatible with every Bell inequality is still unsolved
Sy=Tip(1—p)]=1—Tr(p?), (it is solved for pure states, which may violate a Bell in-

equality if and only if there is entanglemef®]). In this
2 paper we shall consider only the most popular Bell inequali-
Sj=1="Tr(pj), 2 ties, namely the CHSKClauser-Horne-Shimony-Hd|8]) or

the equivalent Clauser-Horrjd] inequalities[for the proof
wherep is the density matrix of the whole system, amdis  of equivalence see below, after E§)]. Actually there are
the reduced density matrix of subsyst¢rj=1,2). An in-  other Bell type inequalities, for instance entropic Bell in-
teresting property of the linear entropy is that the violation ofequalities, which involve classical entropy, hold true in any
the inequality(1) is a necessary condition for entanglement.classical theory, but may be violated by quantum mechanics
It holds true in general, not only for two-qubit systems. For[5,6].
the sake of clarity we give the proof, which is very simple. In  In summary, it is known that separability implies the ful-
fact, a quantum state of the system is separable if, and onlfiment of both Bell inequalities and quantum entropy in-
if, its density matrix may be written in the form equalities. Therefore a natural question is to ask whether the
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entropy inequalities are stronger or weaker than the Bell inHence it is easy to check théee the Appendjx
equalities. That question may also have practical relevance

for the applications of quantum information thedij. The TrB=0, Tr(B? =16, 9
attempt to get an answer is the main motivation for the

present paper. The problem has been already investigat@(ﬁ‘d that the inequality6) is violated if, for some choice of
using quantum linear entropy. In fact it has been sh¢8in the Bell operatoB, | 3|>2, where

that the inequality1) for linear entropy is a sufficient con- B=Tr(pB) (10)
dition for all CHSH inequalities. A slightly more powerful pE)
result is also true, namely that while quantum mechanics just predi¢<2v2. [Equation

(10) follows from Eq.(6) and the linearity of the track.
It is the case that not all values gfandS,, are compat-
ible. In fact, the inequality

St S12=0,  §yj:=S1— S (4)

whereS;;; are called conditional entropies, is sufficigaq.

This means that, for quantum linear entropy 2

1
Tr P_Z|+778 =0, 7neR,

separability=entropy inequalities>Bell inequality.

5
©) wherel is the 4X4 unit matrix, holds true for ally, which

The specific aim of the present paper is to generalize thedgplies
results deriving inequalities weaker than Efj), involving
qguantum(linear and von Neumanrentropy, which are suf-

ficient for the_nonviolati_on of the CHSH or CH inequalities where Eq.(9) has been used. This means that there arg no
fora two-qublt. system in any mixed state. and B such thatS;,, Eq. (2), and 3, Eq. (10), violate the

The CHSH inequality is inequality (11). However, this inequality provides just a nec-
essary condition. In order to fully define a region of compat-
ibility in the {B,S;5} plane we need a condition which, to-
gether with the obvious on&,,=0, is also sufficient. In
a,, b; (a,, b,) being dichotomic observables, which may order to get that condition we must search for the Bell op-
take only the values-1 or —1, for the first(secondl qubit ~ €rator,B, and the density matrixp (Hermitean, positive, and
and (X) means the average of the observaklever many having unit tracgthat give a maximum of the linear entropy
runs of the same experiment. As is well known the fourconstrained by Eq10) with fixed 3. To achieve the goal we
averages should be measured in different experiments, all gtart fixingB [see Eq(8)] whose eigenvalues we shall label
them using the same preparation for the two-qubit system. §1.£2,£3,&4, Written in decreasing order. These eigenvalues
point out that any sufficient condition for the CHSH inequal- fulfil [10] (see the Appendix
ity is also valid for the Clauser-Horne inequalft] P

§3=—&, &=~ 61,611 65=8, (12

+ = + + -
P(A1)+P(A2)=P(A1A2) +P(A1Bo) +p(B1AY) p(Ble()7,) so that the first oneé; €[2,2/2], determines all of them.

Now we will solve the said variational problem wighwrit-
whereA;, B; are observables which may take only the val-ten in a basis of the eigenvectors@fthat is,
ues 1 or 0, ang(X) [or p(XY)] is the probability tha¥ (or

B?+16S,,<12, (11

—2<B<2, B=(a;8y) +(a;by)+(biaz)—(biby), ©

4 4
both X andY) takes the value 1. In fact, it is enough to put _ _
le ri=1, le &rij=0,
aJZZAJ_l, bIZZBJ_l, (13)
4 4 4 4
in Eq. (6) in order to check thaB<2 implies Eq.(7). Sp=1-> > rjkrkj:]-_z > | j|2=max,
j=lk=1 j=1 k=1

Il. BELL INEQUALITIES AND LINEAR ENTROPY wherer;, are the components of the matyxin that basis.

Theorem 1In a two-qubit system, a sufficient condition (The last equality follows from the Hermitean character of
for the fulfilment of all CHSH inequalities is that the linear p.) It is easy to see that the maximum 8f,, for fixed 3,
entropy of the state fulfilsS,;,=>v2/2— 1/4=0.457. For any happens when all nondiagonal elements are zero and, conse-
smaller value ofS,, there are states able to violate the in- quently, our problem is reduced to finding the diagonal ele-
equalities. ments, which | shall labg]r;} from now on.

ProofWe consider quantum observablétermitian trace- In the following we shall assumg=0, the case3<0
less 2<2 matrice$ {a,,b,} for the first qubit and{a,,b,}  being similar. Thus it is possible to solve the variational
for the second, all observables having eigenvalues +r  problem either searching for the maximusg, compatible

We define a Bell operatdi 0], B, by with a giveng, or the maximumB compatible with a given
S5, and the second method will be used now. It may be
B=a;®a,+a;®b,+b;®a,—b®b,. (8) realized that, given the Bell operat® and a set of four
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non-negative numbers whose sum is unity, we may define as Proof. Using the Bell state basis it is not difficult to show
many as 4& 24 different density matrices having these num-[10] that the reduced density matrices corresponding to states

bers as diagonal elements. The linear entrdy, is the
same for all these density matrices, but the valuegdas

different, the choice giving the maximum being r{=r,

=ry=r,, that is the diagonal elements pfdecreasing with
the eigenvalues dB. For this choice we get

ﬁ:(rl_r4)§1+(r2_r3)§2:(rl_r4)§1+(r2_r3)\/8_(§§;
14

where we have taken into account Efj2). Now we choose
B, i.e., &;, in order to maximize3 and we find

2V2(r1—ry)
V(ri—rg)2+(ry—r3)?

23228(1—512)—16(r1r4+l’2r3).

&1=

(19

After that we shall search for the sft;} of non-negative
numbers, adding to one, which malﬂg Eq. (15 a maxi-
mum with S;,= 1—Er]-2 fixed. The solution, written in terms
of B, is

1 V2 1
r=z+ gﬁ, F2=rs=,,
1 V2 )
r4=Z—§/3 if IB$\/2,
(16)
V2 1 V2
rl:TBv r2=r3=§—§,8,

r,=0 if v2=p8<2v2.

| point out that, in both case§; =2v2, which | shall express
saying that the Bell operator is “maximal.” This leads to
[compare with Eq(11)]

3 1 _
=g 1B I 1BI=v2,

7

1 V2 3

S5+ 4 1Bl- 1B If va<|pl=2v2,

where we have included the results for negajvé he state
(16) saturates the bound so that E7), plus S;,=0, fully

define the region of compatibility in thig3,S;,} plane. They
also imply that B<2 whenever S,,=v2/2—1/4, which
proves the theorem.

Theorem 21In a two-qubit system, a sufficient condition

(16) are

1
wherel; is the unit 2<2 matrix associated to the quiitThe
sum of conditional entropies for this state fulfils

11,
52/1+51/2:§_§5 if |Bl=v2,

V2 3 )
=7|BI—§BZ if v2<|p|=<2v2.

Now we must show that, for a gives, this value is a maxi-
mum in order to ensure that E¢L8) implies |5|<2. The
condition for a maximum is tha8(S,/;+ Sy») <0 for an ar-
bitrary variation,dp, of the statep, Eq. (16), such that

Tr(dp)=0, Tr(spB)=0. (20
The first (secondl equality guarantees the unit trace of the
density matrix(that the value ofB does not change We
have

O(Sy1t S11p) =285, 05, — 6S,, (21)

with
8S1,=Tr(p?)—Tr[(p+ 5p)?]
=—2Tr(pdp)—Tr(5p?)
—Tr(8p?),

8Sj=—2Tr(p;dp;) —Tr(8p7) = —Tr(5p7).
In the former equation we have removed the first order term
becauses,, is stationary wherg is fixed for the state, Eq.
(16), in the latter equation due to E@L9) and the first Eq.
(20). Thus we get

8(Spn+ S1) =Tr(8p3) +Tr(8p3) —2 Tr(5p?). (22
A useful bound for the sum of terms involvingp, and 6p,
may be found from the obvious inequality

Tr(5p—0p1® 12— 11® 8p2)*=0,

for the fulfilment of all CHSH inequalities is that the sum of where |; is the unit 2<2 matrix for qubitj. After some

the conditional linear entropies of the state fulfils

3
Sont S1p=v2— > (18

algebra, taking the first Eq20) into account, this becomes
Tr 8p3]+ T 8p351<Tr[ 6p?], (23

which, put in Eqg.(22), shows that the sum of conditional

For any smaller value, there are states violating the inequallinear entropies of the statd6) is indeed a maximum for

ties.

every B, thus proving the theorem.
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IIl. BELL INEQUALITIES AND VON NEUMANN
ENTROPY

In the following we shall derive similar theorems using,
instead of the linear entropy, the von Neumann entropy

(29)

Siz=—Tr(pInp), S;:=—Tr(p;Inp;).

We begin proving that an inequality like E@), in terms of

the von Neumann entropy, is not a sufficient condition for

the CHSH inequalities. We consider the following family of
states:

p=Z(N) texp(AB), Z(\):=TrexpAB), (25

with B an arbitrary Bell operator. It is straightforward to
computeB and S, from the functionZ(\) and we get

_dInZ
p= dn

Tr{exp(AB)[AB—InTrexpAB)]}

S12= - TrexpAB)

=InZ—\pB. (26)
Now we consider more specifically the state
po=Zo(N) "texp(ABg), Zo(N):=Trexp(A\By), (27)

B, being a maximal Bell operatdthat is having 22 as an
eigenvalug We obtain, writing exp(By) in the basis of the
Bell states,

Zo(N)=exp(2V2\)+exp —2v2\) +2
=4 cosR(V2\), (29
whence

B=2v2tanhx, S;,=2In2+2 Incoshx—2x tanhx,

X=V2\.

From these equations we may get a relation betweamd
Sy, for the family of state€27), namely

%)
S1p=5 N2~ [ (2v2+ B)In(2v2+ )

+(2v2-B)In(2v2—p)]. (29)

PHYSICAL REVIEW A69, 022305 (2004

sponds t0S;,=0.833 andS,,;+ S;,,=0.280, which implies
that, if there are sufficient conditions for the CHSH inequali-
ties of the form S;,=K; and S,;+S;,=K,, then K;
=0.833 andK,=0.280.

Theorem 3If a two-qubit system is in a state with density
matrix p, the inequality

S;,>3In2-v2In(v2+1)=0.833,

whereS;, is the von Neumann entropy, is a sufficient condi-
tion for the fulfiiment of all CHSH inequalities. For any
smaller value 0f5;, there are states violating the inequalities.

Proof. We shall prove the theorem in three ste{d3:Fix-
ing a numberBe[—2v2,2v2] and (the eigenvalues dfa
Bell operatorB, we shall search for a density matrjx,mak-
ing S;, a maximum compatible with TB)= 8. (2) Now
we fix only B8 and search fofthe eigenvalues dfthe Bell
operator providing the greateSt,. Let us labelK,(8) that
value of S;,. (3) We shall show thaK,(8)=K;(—8) and
that K,(B) decreases whejg| increases. After that, it be-
comes clear that;(2) gives the desired sufficient condition
for the CHSH inequalities. In fact, anyand anyB leading
to S;,=K;(2) would give|B8|=<2 so that the CHSH inequal-
ity will be satisfied.

In the first step we begin fixing the Bell operat®rand
the numbeB and we search for the density matpixmaking
the von Neumann entropys;,, stationary with the con-
straints Tip=1, Tr(pB)=pB. This is a standard variational
problem which, introducing Lagrange multipliekssand y,
may be stated

S{Tr(pInp) =\ Tr(pB)—x Trp}

=Tr{Sp[Inp—A\B—x+1]}=0, (31

whose solution is of the form of E@25), B being the given
Bell operator and\ fixed by the first Eq.(26). Still it is
necessary to prove that the solution found for the variational
problem actually gives a maximum 8f, (rather than, e.g., a
minimum). To do that we use the density operajgr=p

+ 6p wherep is given by Eq.(25) with v2\ =0.883 anddp
fulfils Eqg. (20). Hence we obtain

3S1,=—Trl(p+ Sp)In(p+ Sp)]+Tr(pInp).

We may expand In(+p) in powers of 5p up to second
order. The expansion is well defined because all integer pow-
ers orp, Eq. (25), either with positive or negative exponent,
are well defined. Also, to second order there is no problem
with the possible nhoncommutativity of the operatprend

Using the Bell state basis it is easy to prove that the reducegp. Taking Eq.(20) into account we obtain no term of first

density matrices of Eq(27) are a multiple of the identity,
that is

1
pi=51,2S=S,=In2. (30)

From Egs.(29) and(30) we derive thatS,;;+ S;,=0 cor-
responds tg3=+*2.206, so that an inequality like E4),

but using von Neumann entropy, is not a sufficient condition

for the CHSH inequalities. On the other ha@er £2 corre-

order in &p, as it should,S;, being stationary. The second
order term is

1
828 ,= — ETr[p—lapz]so, (32)
which proves that a density operator of the form of E2fH)
makesS;, a maximum.
In the second step we shall prove that E2p) gives the
maximum value ofS;, compatible with the fixeds, if we
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choose the Bell operator to be maximal. In fact, from theThe right-hand side may be calculated in a basis of Bell
eigenvalues of any Bell operator we may get the functiorstates and we obtain
Z(\) [see Egs(25) and(12)] in terms of the eigenvalues

4
Z(N)=expN{q) Fexp(—AEp) FexpNdy) +Fexp(—NEy) 5{2(52/1‘*' Sllz)ggl <Xk| 5P2[1_Pil]|Xk>

=4 coshu coshy, 4
— 2

With = 1/2(Z,+£5), v="1/2((1— ¢,). Hence it is straight- &, (xldp1x0T1-Zo M exp ~1&9)],
forward to obtaing andS;, using Eq.(26), but we omit the
results. This leads to the variational problem of findifg ~ Where we have labele) the Bell states and the corre-
Z», and\ which makeS,, a maximum for fixeds [with Eq. ~ SPonding eigenvalueq(\) being given by Eq(28). We
(12) fulfiled]. The solution is {;=2v2, {,=0, V2 see that the right-hand side is negative if the following in-
=0.881, which corresponds to the density operator of Eq€duality holds for everk:
(27).

The third step, that is proving th#t;(8)=K,(—8) and Zo(M)exp( =N &) >1,
that S;, increases whefy3| decreases, is trivial taking into
account Eq(29).

Finally, the state given by E@27) saturates the bound of
the theorem, which completes the proof.

The functionS;,=S;,(8), given by Eq.(29), provides the
upper limit, andS;,=0 the lower limit, of the region of
compatibility in the{B,S;5} plane, this time in terms of von
Neumann’s entropjcompare with Eq(17), defining a simi-
lar region in the case of linear entrapy

Theorem 4If a two-qubit system is in a state with density

and this is true if the inequality is fulfilled, for ang, for the
largest eigenvalué; =2v2. A simple calculation proves that
this is indeed the case, which shows tBgi+ S,/, presents a
maximum, thus proving the theorem.

It is interesting that, according to this theorem, the second
implication (5) does not hold true in the case of the von
Neumann entropy.

IV. ENTROPY AND LOCAL HIDDEN VARIABLES

matrix p, the inequality I shall finish with a comment about how specific for the
CHSH inequalities are the results here presented, that is
Sy1tS1,>4 In2-2v2In(v2+1)=0.280 whether they may be extended to other Bell inequalfiies,

. ) o . inequalities characteristic of local hidden variablg$iV)
in terms of von Neumann entropy, is a sufficient conditionmodelg. The question, stated more generally, is whether the
for the fulfilment of all CHSH inequalities. For any smaller entropy inequalities considered in the previous theorems are
value, there are states violating the inequalities. sufficient for the existence of LHV models. The answer
Proof. The previous results suggest that E2j7) provides  seems to be negative, although a more detailed study is nec-
the density matrix giving the maximum value 8:+S;>  essary. In fact, it is known that the CHSH inequalities are
for a given 8. Here we show that this is the case by justpecessary conditions for the existence of LHV theories, but
proving thaté (Sy.+ Sy is negative up to second order in they are not sufficient. It has been proven that, having chosen
dp for that state. We get an equality like E(1), but in  foyr observables,, a,, by, b, as in Eq.(6), the fulfilment
terms of von Neumann’s entropy, wi#,;, given to second  of the four CHSH inequalities obtained by changing the

order by Eq.(32) and place of the minus sign is a sufficient condition for the exis-
tence of a LHV model involving these four observallg&s],
6Sj=—Trl(p;+ SpyIn(p;+ dp;) ]+ Tr(pjIn p;) but there are counterexamples proving that the condition is
- T 5p12]+ prjg)’ (33) not sufficient for more than fourl2].
where APPENDIX

For the sake of clarity present here a short rederivation
p1=Tr2p, 3p1=Tra(dp), of some properties of the Bell operattsee the paper by
o Braunsteiret al. [10]).
and is similar forp, and dp,. In the second Eq(33) we The square of the Bell operat(8) may be written, taking
have taken into account EqR0) and(30), the latter imply- into account that the square of any of the operaggrsa,,

. 71_ _ .
ing p; “=2l; and Inpj=—In 2I;. Hence using Eqs32) and  p, or b, is the unit operator in the corresponding Hilbert
(33) we get space,

8(Syn+Syp) =T 8p3]+Ti 8p5]—Tr[ p~ 1 6p®]+O( 6p(3)-) B2=41,®1,—[a,,b;]®[a,,b,].
34
_ _ o _ Now we remember that any operatayjn a two-dimensional
Now we use the inequalit{23) giving, to second order idp,  space having eigenvaluesl may be written in the form
8PSyt Sy <Tr 8?1~ Trlp~ *8p?]. a=a-o,
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wherea is a unit vector in ordinary, three-dimensional space |T1) and || ]) with the same eigenvaluéé;)?
and o the vector of the Pauli matrices. Thus we may write )
=(&4)°=4+4|a;Xb,||a;Xby|,
B2=41,®1,+4(ayXb;)- o7,® (a,Xb,) - o,

E4|1®|2+4|a1Xb1||a2Xb2|0'12®0'22,

) ) |T1) and || 1) with the same eigenvalué¢,)?
where the last expression corresponds to taking reference
frames with thez axis in the directiona; Xb; (a,Xb,) for =(£3)%=4—4]a;Xby||a;Xb,|,
the first(second particle. From the latter representation it is

easy to see thaB? possesses eigenvectors which may be

represented, with an obvious notation, Hence Egs(12) and(9) follow without difficulty.
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