Cascade processes are responsible for many important phenomena in natural and
social sciences. Simple models of irreversible dynamics on graphs, in which
nodes activate depending on the state of their neighbors, have been
successfully applied to describe cascades in a large variety of contexts. Over
the last decades, many efforts have been devoted to understand the typical
behaviour of the cascades arising from initial conditions extracted at random
from some given ensemble. However, the problem of optimizing the trajectory of
the system, i.e. of identifying appropriate initial conditions to maximize (or
minimize) the final number of active nodes, is still considered to be
practically intractable, with the only exception of models that satisfy a sort
of diminishing returns property called submodularity. Submodular models can be
approximately solved by means of greedy strategies, but by definition they lack
cooperative characteristics which are fundamental in many real systems. Here we
introduce an efficient algorithm based on statistical physics for the
optimization of trajectories in cascade processes on graphs. We show that for a
wide class of irreversible dynamics, even in the absence of submodularity, the
spread optimization problem can be solved efficiently on large networks.
Analytic and algorithmic results on random graphs are complemented by the
solution of the spread maximization problem on a real-world network (the
Epinions consumer reviews network).Comment: Replacement for "The Spread Optimization Problem