The problem of targeted network immunization can be defined as the one of
finding a subset of nodes in a network to immunize or vaccinate in order to
minimize a tradeoff between the cost of vaccination and the final (stationary)
expected infection under a given epidemic model. Although computing the
expected infection is a hard computational problem, simple and efficient
mean-field approximations have been put forward in the literature in recent
years. The optimization problem can be recast into a constrained one in which
the constraints enforce local mean-field equations describing the average
stationary state of the epidemic process. For a wide class of epidemic models,
including the susceptible-infected-removed and the
susceptible-infected-susceptible models, we define a message-passing approach
to network immunization that allows us to study the statistical properties of
epidemic outbreaks in the presence of immunized nodes as well as to find
(nearly) optimal immunization sets for a given choice of parameters and costs.
The algorithm scales linearly with the size of the graph and it can be made
efficient even on large networks. We compare its performance with topologically
based heuristics, greedy methods, and simulated annealing