81 research outputs found

    Gene-Environment Interaction Research and Transgenic Mouse Models of Alzheimer's Disease

    Get PDF
    The etiology of the sporadic form of Alzheimer's disease (AD) remains largely unknown. Recent evidence has suggested that gene-environment interactions (GxE) may play a crucial role in its development and progression. Whereas various susceptibility loci have been identified, like the apolipoprotein E4 allele, these cannot fully explain the increasing prevalence of AD observed with aging. In addition to such genetic risk factors, various environmental factors have been proposed to alter the risk of developing AD as well as to affect the rate of cognitive decline in AD patients. Nevertheless, aside from the independent effects of genetic and environmental risk factors, their synergistic participation in increasing the risk of developing AD has been sparsely investigated, even though evidence points towards such a direction. Advances in the genetic manipulation of mice, modeling various aspects of the AD pathology, have provided an excellent tool to dissect the effects of genes, environment, and their interactions. In this paper we present several environmental factors implicated in the etiology of AD that have been tested in transgenic animal models of the disease. The focus lies on the concept of GxE and its importance in a multifactorial disease like AD. Additionally, possible mediating mechanisms and future challenges are discussed

    No Evidence of Persisting Unrepaired Nuclear DNA Single Strand Breaks in Distinct Types of Cells in the Brain, Kidney, and Liver of Adult Mice after Continuous Eight-Week 50 Hz Magnetic Field Exposure with Flux Density of 0.1 mT or 1.0 mT

    Get PDF
    BACKGROUND: It has been hypothesized in the literature that exposure to extremely low frequency electromagnetic fields (50 or 60 Hz) may lead to human health effects such as childhood leukemia or brain tumors. In a previous study investigating multiple types of cells from brain and kidney of the mouse (Acta Neuropathologica 2004; 107: 257-264), we found increased unrepaired nuclear DNA single strand breaks (nDNA SSB) only in epithelial cells of the choroid plexus in the brain using autoradiographic methods after a continuous eight-week 50 Hz magnetic field (MF) exposure of adult mice with flux density of 1.5 mT. METHODS: In the present study we tested the hypothesis that MF exposure with lower flux densities (0.1 mT, i.e., the actual exposure limit for the population in most European countries, and 1.0 mT) shows similar results to those in the previous study. Experiments and data analysis were carried out in a similar way as in our previous study. RESULTS: Continuous eight-week 50 Hz MF exposure with 0.1 mT or 1.0 mT did not result in increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice. MF exposure with 1.0 mT led to reduced unscheduled DNA synthesis (UDS) in epithelial cells in the choroid plexus of the fourth ventricle in the brain (EC-CP) and epithelial cells of the cortical collecting duct in the kidney, as well as to reduced mtDNA synthesis in neurons of the caudate nucleus in the brain and in EC-CP. CONCLUSION: No evidence was found for increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice after continuous eight-week 50 Hz magnetic field exposure with flux density of 0.1 mT or 1.0 mT

    Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences

    Get PDF
    Efficient processing of information by the central nervous system (CNS) represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB), which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF) from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF) barrier (BCSFB), which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs) that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC) transport proteins at those two barriers and underlines differences in their expression between the two barriers. Also, many blood-borne molecules and xenobiotics can diffuse into brain ISF and then into neuronal membranes due to their physicochemical properties. Entry of these compounds could be detrimental for neural transmission and signalling. Thus, BBB and BCSFB express transport proteins that actively restrict entry of lipophilic and amphipathic substances from blood and/or remove those molecules from the brain extracellular fluids. The third part of this review concentrates on the molecular biology of ATP-binding cassette (ABC)-transporters and those SLC transporters that are involved in efflux transport of xenobiotics, their expression at the BBB and BCSFB and differences in expression in the two major blood-brain interfaces. In addition, transport and diffusion of ions by the BBB and CP epithelium are involved in the formation of fluid, the ISF and CSF, respectively, so the last part of this review discusses molecular biology of ion transporters/exchangers and ion channels in the brain endothelial and CP epithelial cells

    Lipid nanocarriers loaded with natural compounds: Potential new therapies for age related neurodegenerative diseases?

    Get PDF
    Article in pressAge related neurodegenerative disorders (ARND) are presented as the most debilitating and challenging diseases associated with the central nervous system. Despite the advent of active molecules with a positive role on neurodegenerative mechanisms, many of the current therapeutic strategies remain ineffective in treating or preventing ARND. Lipid nanocarriers have emerged as efficient delivery systems with the capability to cross biological barriers, especially the blood brain barrier (BBB). Also, when associated to natural compounds, lipid nanocarriers have demonstrated to be an interesting alternative to ARND therapies with multiple beneficial effects. This comprehensive review focus on state-of-the-art lipid based nanocarriers for the delivery of natural compounds targeting neurodegeneration. A critical analysis of published reports will be also provided giving indications to researchers about the most promising ARND nanotherapy strategies.Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013. Marlene Lúcio acknowledges the exploratory project funded by FCT with the reference IF/00498/2012. Telma Soares acknowledges COMPETE 2020 “Programa Operacional Competitividade e internacionalização”info:eu-repo/semantics/publishedVersio

    Caloric restriction and aging but not overexpression of SOD1 affect hippocampal volumes in mice

    No full text
    Caloric restriction (CR) and antioxidants have been proposed as strategies to attenuate age-related brain changes. The hippocampus and its subregions dentate gyrus (DG). CA3 and CA1-2 show vulnerability to aging, with hippocampal volume alterations as a measurable sign. Using design-based stereological techniques, we investigated the volumes of the hippocampus and its subregions in six 12-month-old and six 24-month-old mice that were randomly selected from four aging cohorts of 60 male mice each: (1) wild-type mice (WT) fed with control diet (CD), (2) transgenic mice oxerexpressing normal human SOD1 fed with CD, (3) WT mice fed with CR diet, and (4) SOD1 mice fed with CR diet. Aging reduced the mean volume of the entire hippocampus (-9.5%), grey (-8.7%) and white matter (-9.7%), and CA3 subregion (-13.6%), but not DG or CA1-2 subregion. CR reduced the mean volumes of every hippocampal region investigated (on average 11%) in both 12-month-old, and 24-month-old mice. Overexpression of SOD1 was not associated with any volume alteration. These findings indicate that although aging and CR in mice are both associated with hippocampal volume reductions, the patterns of the volume reductions differ. These morphometric alterations may have impact on the function of the hippocampus during aging and CR

    Moderate loss of cerebellar Purkinje cells after chronic bilateral common carotid artery occlusion in rats

    No full text
    Pathological effects of moderate ischemia (oligemia, hypoperfusion) are relevant in relation to vascular factors in dementia. Chronic bilateral common carotid artery occlusion (BCCAO) in adult Wistar rats induces oligemia and leads to acute changes in gene expression, subacute changes in cortical astrocytes and prolonged changes in white matter tracts, while largely sparing neurons in the forebrain areas. Dilation and remodeling of the basilar artery ensures blood flow to the forebrain. The present study examined the hypoxia-sensitive Purkinje cells in the cerebellum after 6 months of BCCAO using conventional neuropathological analysis, immunohistochemistry and high-precision design-based stereologic methods. Purkinje cells in the vermis region revealed abnormally shaped nuclei. A stereologic analysis showed that the mean total number of Purkinje cells within the vermis was statistically significantly smaller in the BCCAO animals than in the control animals (d = 11.8%; P < 0.0001). BCCAO had no significant effect on the mean volumes of the molecular layer, granule cell layer and white matter in the vermis or the entire cerebellum. Remodeling of the basilar artery indicated that secondary vascular perturbations might be responsible for the effects of BCCAO on the cerebellar Purkinje cells
    corecore