1,392 research outputs found

    Investigating the interstellar dust through the Fe K-edge

    Get PDF
    The chemical and physical properties of interstellar dust in the densest regions of the Galaxy are still not well understood. X-rays provide a powerful probe since they can penetrate gas and dust over a wide range of column densities (up to 1024 cm−210^{24}\ \rm{cm}^{-2}). The interaction (scattering and absorption) with the medium imprints spectral signatures that reflect the individual atoms which constitute the gas, molecule, or solid. In this work we investigate the ability of high resolution X-ray spectroscopy to probe the properties of cosmic grains containing iron. Although iron is heavily depleted into interstellar dust, the nature of the Fe-bearing grains is still largely uncertain. In our analysis we use iron K-edge synchrotron data of minerals likely present in the ISM dust taken at the European Synchrotron Radiation Facility. We explore the prospects of determining the chemical composition and the size of astrophysical dust in the Galactic centre and in molecular clouds with future X-ray missions. The energy resolution and the effective area of the present X-ray telescopes are not sufficient to detect and study the Fe K-edge, even for bright X-ray sources. From the analysis of the extinction cross sections of our dust models implemented in the spectral fitting program SPEX, the Fe K-edge is promising for investigating both the chemistry and the size distribution of the interstellar dust. We find that the chemical composition regulates the X-ray absorption fine structures in the post edge region, whereas the scattering feature in the pre-edge is sensitive to the mean grain size. Finally, we note that the Fe K-edge is insensitive to other dust properties, such as the porosity and the geometry of the dust.Comment: 11 pages, 10 figures. Accepted for publication in Astronomy and Astrophysic

    Dynamical Precipitation Downscaling for Hydrologic Applications Using WRF 4D-Var Data Assimilation: Implications for GPM Era

    Get PDF
    The objective of this study is to develop a framework for dynamically downscaling spaceborne precipitation products using the Weather Research and Forecasting (WRF) Model with four-dimensional variational data assimilation (4D-Var). Numerical experiments have been conducted to 1) understand the sensitivity of precipitation downscaling through point-scale precipitation data assimilation and 2) investigate the impact of seasonality and associated changes in precipitation-generating mechanisms on the quality of spatiotemporal downscaling of precipitation. The point-scale experiment suggests that assimilating precipitation can significantly affect the precipitation analysis, forecast, and downscaling. Because of occasional overestimation or underestimation of small-scale summertime precipitation extremes, the numerical experiments presented here demonstrate that the wintertime assimilation produces downscaled precipitation estimates that are in closer agreement with the reference National Centers for Environmental Prediction stage IV dataset than similar summertime experiments. This study concludes that the WRF 4D-Var system is able to effectively downscale a 6-h precipitation product with a spatial resolution of 20 km to hourly precipitation with a spatial resolution of less than 10 km in grid spacing—relevant to finescale hydrologic applications for the era of the Global Precipitation Measurement mission

    Combined Assimilation of Satellite Precipitation and Soil Moisture: A Case Study Using TRMM and SMOS Data

    Get PDF
    This paper presents a framework that enables simultaneous assimilation of satellite precipitation and soil moisture observations into the coupled Weather Research and Forecasting (WRF) and Noah land surface model through variational approaches. The authors tested the framework by assimilating precipitation data from the Tropical Rainfall Measuring Mission (TRMM) and soil moisture data from the Soil Moisture Ocean Salinity (SMOS) satellite. The results show that assimilation of both TRMM and SMOS data can effectively improve the forecast skills of precipitation, top 10-cm soil moisture, and 2-m temperature and specific humidity. Within a 2-day time window, impacts of precipitation data assimilation on the forecasts remain relatively constant for forecast lead times greater than 6 h, while the influence of soil moisture data assimilation increases with lead time. The study also demonstrates that the forecast skill of precipitation, soil moisture, and near-surface temperature and humidity are further improved when both the TRMM and SMOS data are assimilated. In particular, the combined data assimilation reduces the prediction biases and root-mean-square errors, respectively, by 57% and 6% (for precipitation); 73% and 27% (for soil moisture); 17% and 9% (for 2-m temperature); and 33% and 11% (for 2-m specific humidity)

    Mechanically induced helix-coil transition in biopolymer networks

    Get PDF
    The quasi-equilibrium evolution of the helical fraction occurring in a biopolymer network (gelatin gel) under an applied stress has been investigated by observing modulation in its optical activity. Its variation with the imposed chain extension is distinctly non-monotonic and corresponds to the transition of initially coiled strands to induced left-handed helices. The experimental results are in qualitative agreement with theoretical predictions of helices induced on chain extension. This new effect of mechanically stimulated helix-coil transition has been studied further as a function of the elastic properties of the polymer network: crosslink density and network aging

    Primary familial brain calcification linked to deletion of 5' noncoding region of SLC20A2

    Get PDF
    OBJECTIVES: Primary familial brain calcification (PFBC) is a rare neurological disease often inherited as a dominant trait. Mutations in four genes (SLC20A2, PDGFB, PDGFRB, and XPR1) have been reported in patients with PFBC. Of these, point mutations or small deletions in SLC20A2 are most common. Thus far, only one large deletion covering entire SLC20A2 and several smaller, exonic deletions of SLC20A2 have been reported. The aim of this study was to identify the causative gene defect in a Finnish PFBC family with three affected patients. MATERIALS AND METHODS: A Finnish family with three PFBC patients and five unaffected subjects was studied. Sanger sequencing was used to exclude mutations in the coding and splice site regions of SLC20A2, PDGFRB, and PDGFB. Whole-exome (WES) and whole-genome sequencing (WGS) were performed to identify the causative mutation. A SNP array was used in segregation analysis. RESULTS: Copy number analysis of the WGS data revealed a heterozygous deletion of ~578 kb on chromosome 8. The deletion removes the 5' UTR region, the noncoding exon 1 and the putative promoter region of SLC20A2 as well as the coding regions of six other genes. CONCLUSIONS: Our results support haploinsufficiency of SLC20A2 as a pathogenetic mechanism in PFBC. Analysis of copy number variations (CNVs) is emerging as a crucial step in the molecular genetic diagnostics of PFBC, and it should not be limited to coding regions, as causative variants may reside in the noncoding parts of known disease-associated genes

    Spatial distribution of precipitation recycling in the Amazon basin Elfatih

    Get PDF
    A free-boundary theory for the shape of the ideal dripping icicle Phys. Fluids 18, 083101 (2006) Grain growth theories and the isothermal evolution of the specific surface area of snow J. Appl. Phys. 95, 6175 (2004) Automated spectro-goniometer: A spherical robot for the field measurement of the directional reflectance of snow Rev. Sci. Instrum. 74, 5179 (2003) Comment on "Grain boundary ridge on sintered bonds between ice crystals" [J. Appl. Phys. 90, 5782 (2001)] J. Appl. Phys. 93, 783 (2003) Sintering in a dry snow cover J. Appl. Phys. 84, 4585 (1998) Additional information on AIP Conf. Proc. ABSTRACT Precipitation recycling is the contribution of evaporation within a large region to precipitation in that same region. The rate of recycling is a diagnostic measure of the coupling of land surface hydrology and regional climate. Here we describe the spatial and seasonal variability of the precipitation recycling process over the Amazon basin. The results are based on data of evaporation and water vapor fluxes from the European Center for Medium Range Weather Forecast (ECMWF). We estimate that 25% of all the rain that falls in the Amazon basin is contributed by evaporation within the basin. The contribution of recycled water vapor increases westward and southward with significantly different spatial distributions in the different seasons. INTRODUCTION Hydrology affects climate in many different ways. Evaporation provides the water vapor necessary for precipitation processes. Latent heat fluxes associated with evaporation and condensation provide an important energy transport mechanism in the Earth's atmosphere. Because land surface hydrology plays such a significant role in maintaining the equilibrium of regional climate, many recent studies t,2,3 suggest that anthropogenic changes in surface hydrology, e.g., deforestation of the Amazon basin, may result in serious impacts on climate. The precipitation recycling rate is a diagnostic measure of the current degree of coupling and the potential interactions of land surface hydrology and regional climate. Previous studies suggested different ways for computing precipitation recycling. Budyko 4 provides a spatially lumped estimate of precipitation recycling. It describes the seasonal but not the spatial distribution of the recycling rate. Lettau 5 describes precipitation recycling along a single streamline. We study both the spatial and seasonal variability of the recycling process. We consider two species of water vapor molecules; those which evaporate outside the region and molecules which evaporate within the region. The definition of the word 'region' includes all the area under study which is the Amazon basin. It is not restricted to the area of a single grid point. For a finite control volume of the atmosphere, conservation of mass requires the following relations

    Generation of a library of carbohydrate-active enzymes for plant biomass deconstruction

    Get PDF
    Áreas de pesquisa: Biochemistry & Molecular Biology ; ChemistryIn nature, the deconstruction of plant carbohydrates is carried out by carbohydrate-active enzymes (CAZymes). A high-throughput (HTP) strategy was used to isolate and clone 1476 genes obtained from a diverse library of recombinant CAZymes covering a variety of sequence-based families, enzyme classes, and source organisms. All genes were successfully isolated by either PCR (61%) or gene synthesis (GS) (39%) and were subsequently cloned into Escherichia coli expression vectors. Most proteins (79%) were obtained at a good yield during recombinant expression. A significantly lower number (p < 0.01) of proteins from eukaryotic (57.7%) and archaeal (53.3%) origin were soluble compared to bacteria (79.7%). Genes obtained by GS gave a significantly lower number (p = 0.04) of soluble proteins while the green fluorescent protein tag improved protein solubility (p = 0.05). Finally, a relationship between the amino acid composition and protein solubility was observed. Thus, a lower percentage of non-polar and higher percentage of negatively charged amino acids in a protein may be a good predictor for higher protein solubility in E. coli. The HTP approach presented here is a powerful tool for producing recombinant CAZymes that can be used for future studies of plant cell wall degradation. Successful production and expression of soluble recombinant proteins at a high rate opens new possibilities for the high-throughput production of targets from limitless sourcesinfo:eu-repo/semantics/publishedVersio

    Valorization of byproducts of hemp multipurpose crop: Short non-aligned bast fibers as a source of nanocellulose

    Get PDF
    Nanocellulose was extracted from short bast fibers, from hemp (Cannabis sativa L.) plants harvested at seed maturity, non-retted, and mechanically decorticated in a defibering apparatus, giving non-aligned fibers. A chemical pretreatment with NaOH and HCl allowed the removal of most of the non-cellulosic components of the fibers. No bleaching was performed. The chemically pretreated fibers were then refined in a beater and treated with a cellulase enzyme, followed by mechanical defibrillation in an ultrafine friction grinder. The fibers were characterized by microscopy, infrared spectroscopy, thermogravimetric analysis and X-ray diffraction after each step of the process to understand the evolution of their morphology and composition. The obtained nanocellulose suspension was composed of short nanofibrils with widths of 5–12 nm, stacks of nanofibrils with widths of 20–200 nm, and some larger fibers. The crystallinity index was found to increase from 74% for the raw fibers to 80% for the nanocellulose. The nanocellulose retained a yellowish color, indicating the presence of some residual lignin. The properties of the nanopaper prepared with the hemp nanocellulose were similar to those of nanopapers prepared with wood pulp-derived rod-like nanofibrils
    • 

    corecore