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ABSTRACT

This paper presents a framework that enables simultaneous assimilation of satellite precipitation and soil

moisture observations into the coupled Weather Research and Forecasting (WRF) and Noah land surface

model through variational approaches. The authors tested the framework by assimilating precipitation data

from the Tropical Rainfall MeasuringMission (TRMM) and soil moisture data from the Soil Moisture Ocean

Salinity (SMOS) satellite. The results show that assimilation of both TRMM and SMOS data can effectively

improve the forecast skills of precipitation, top 10-cm soil moisture, and 2-m temperature and specific hu-

midity. Within a 2-day time window, impacts of precipitation data assimilation on the forecasts remain rel-

atively constant for forecast lead times greater than 6 h, while the influence of soil moisture data assimilation

increases with lead time. The study also demonstrates that the forecast skill of precipitation, soil moisture, and

near-surface temperature and humidity are further improved when both the TRMM and SMOS data are

assimilated. In particular, the combined data assimilation reduces the prediction biases and root-mean-square

errors, respectively, by 57% and 6% (for precipitation); 73% and 27% (for soil moisture); 17% and 9%

(for 2-m temperature); and 33% and 11% (for 2-m specific humidity).

1. Introduction

Numerical climate and land–atmosphere models are

widely used for providing land–atmospheric predictions at

different time scales. These models typically capture both

atmospheric thermodynamic processes and cloud micro-

physics to predict the dynamics of land–atmosphere water

and energy fluxes. To improve the predictions of land–

atmosphere state variables and parameters, a common

practice is to assimilate observations from in situ gauges,

radiosondes, and satellite measurements into these nu-

mericalmodels. Although predictions of precipitation and

soil moisture are intertwined (Case et al. 2011; Jiménez
et al. 2014; Feng and Houser 2015), modern weather data

assimilation systems often do not include soilmoisture as a

control state variable (Parrish and Derber 1992; Derber

and Bouttier 1999; Barker et al. 2004; Wang et al. 2013).

Therefore, the relative usefulness of assimilating sat-

ellite soil moisture observations into a coupled land–

atmosphere model remains largely unknown. To this end,

this paper develops a framework that allows simultaneous

assimilation of satellite soil moisture and precipitation

data into a coupled land–atmosphere model.

Direct assimilation of precipitation has received a lot

of attention in the past years. The most common tech-

nique used for assimilation of accumulated precipitationCorresponding author: Liao-Fan Lin, liaofan.lin@gatech.edu
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is the four-dimensional variational data assimilation

(4D-Var). Examples of global weather prediction sys-

tems capable of precipitation data assimilation include

the Goddard Earth Observing System (GEOS) (Hou

et al. 2000a,b, 2001, 2004; Pu et al. 2002; Lin et al. 2007),

the European Centre for Medium-Range Weather

Forecasts (ECMWF) operational system (Lopez and

Bauer 2007; Geer et al. 2008; Lopez 2011, 2013), and the

National Centers for Environmental Prediction (NCEP)

Global Forecast System (GFS) (Lien et al. 2016; Shao

et al. 2016). On a regional scale, studies have assimilated

rain rates into models such as the Weather Research and

Forecasting (WRF) Model (P. Kumar et al. 2014; Lin

et al. 2015) and the JapanMeteorological Agency (JMA)

system (Koizumi et al. 2005). These studies have shown

considerable improvement in rainfall forecasts over var-

ious spatiotemporal resolutions. However, there are

several remaining issues associated with assimilation of

precipitation, including (i) quick decay of the influence of

assimilated information, (ii) non-Gaussian model error,

(iii) inconsistency between full physics parameterization

and its linearized representation, and (iv) large mis-

matches between observations and precipitation fore-

casts (Errico et al. 2007; Lopez 2007; Bauer et al. 2011).

Unlike precipitation data assimilation, soil moisture

land surface data assimilation has been studied mostly

offline with a land surface model that is not coupled with

an atmospheric model (e.g., Dunne and Entekhabi 2006;

Reichle et al. 2007; Liu et al. 2011; Peters-Lidard et al.

2011; Flores et al. 2012, 2014; S. V. Kumar et al. 2014;

Zhao et al. 2016). The family of soil moisture data as-

similation methods uses prescribed atmospheric forcing

(e.g., precipitation and downward radiation) and up-

dates only selected land surface states, which often in-

clude soil moisture and temperature profiles. More

recently, Rasmy et al. (2011, 2012) developed a WRF-

based system that is capable of updating the state of soil

moisture, cloud liquid water, water vapor, rain, and

snow through the assimilation of radiances from the

Advanced Microwave Scanning Radiometer for Earth

Observing System (AMSR-E). However, the analysis

procedure of the atmospheric control states does not

consider any error correlation in space. Another exam-

ple is the development of a land data assimilation system

semicoupled toMétéo France’s Aire Limitée Adaptation

Dynamique Développement International (ALADIN)

weather system (Mahfouf et al. 2009; Mahfouf 2010;

Draper et al. 2009, 2011a,b; Schneider et al. 2014). In this

type of design, the land surface data assimilation system

operates independently and provides land surface state

analysis information to the land surface model coupled to

the atmospheric weather model at the end of the simu-

lation intervals (e.g., every 6h).

In our previous work, Lin et al. (2015) assimilated

ground-based radar precipitation data into the WRF

Model for studying precipitation downscaling, and Lin

et al. (2017) developed a soil moisture data assimilation

system with the WRF–Noah and tested with the Soil

Moisture and Ocean Salinity (SMOS) soil moisture

data. In this paper, we aim to better understand how

combined assimilation of precipitation and soil moisture

can improve forecasting of land–atmospheric exchange

and to understand their relative implications, rather

than making any new algorithmic innovations to ad-

dress the explained technical problems. To this end, we

implement a combined variational data assimilation sys-

tem to assimilate both satellite precipitation and soil

moisture data into the WRF–Noah coupled land–

atmosphere model. The background error covariances of

the atmospheric control states and land surface soil mois-

ture states are estimated separately using the National

Meteorological Center (NMC) method (Parrish and

Derber 1992). The main objective of this study is to in-

vestigate the relative impact of jointly assimilating pre-

cipitation and soil moisture data on the ability to forecast

the two variables as well as atmospheric variables that

control the land surface energy balance. We choose to

assimilate precipitation and soil moisture retrievals di-

rectly instead of using indirect overland radiance assimi-

lation, which is not well understood over frequency

channels below 50GHz. It is important to note that direct

assimilation of ground-based precipitation rain rates has

been used in the ECMWF operational forecast system

(Lopez 2011, 2013). We conduct several numerical ex-

periments with the developed assimilation system to as-

similate data from the Tropical Rainfall Measuring

Mission (TRMM) 3B42 version 7 precipitation (Huffman

et al. 2007) using the WRF 4D-Var system and the SMOS

soil moisture retrievals (Kerr et al. 2010) via aWRF–Noah

one-dimensional variational data assimilation (1D-Var)

system. The results are validated against several reference

datasets. The results show that assimilation of both

TRMM and SMOS data improves forecast skills of pre-

cipitation, soil moisture, and 2-m air temperature and

specific humidity. The validation of 2-day forecasts also

shows that the improvement rate due to precipitation data

assimilation is nearly constant in time beyond a 6-h win-

dow, while the effects of soil moisture data assimilation

increase throughout the 2-day forecasts.

The rest of the paper is organized as follows. Section 2

briefly explains the datasets, model configuration, and

experiment design. In section 3, we evaluate the relative

effect of combined data assimilation on predictions of

precipitation, soil moisture, and 2-m air temperature

and specific humidity. In section 4, we discuss the overall

forecast skills and present the conclusions.
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2. Datasets and methodology

a. Datasets

This study uses three datasets in the data assimilation

experiments, namely, the NCEP Final Analysis (FNL)

to provide the boundary and initial conditions to our

WRF experiments, the TRMM 3B42 precipitation to be

assimilated into the WRF Model, and the SMOS soil

moisture to be assimilated into the Noah land surface

model. The 18 NCEP FNL data are produced by the

Global Data Assimilation System (GDAS) on a nearly

real-time scale and contain variables such as surface

pressure, geopotential height, temperature, soil states,

humidity, and winds. In the NCEP FNL data, the at-

mospheric variables are available in at least 26 levels

from 10 to 1000 hPa, while the soil states are available at

soil layers with thicknesses of 10, 30, 60, and 100 cm from

top to bottom. The TRMM 3B42 product is retrieved

frommultiple satellite sensors with a temporal resolution

of 3h and a spatial resolution of 0.258 3 0.258 covering
508S to 508N latitudes (Huffman et al. 2007). This product

uses a series of microwave and infrared estimates of

precipitation and removes the bias using rain gauge ob-

servations. In addition, we use level-3 SMOS soil mois-

ture retrieval at a spatial resolution of 25km from the

Barcelona Expert Centre, which is based on a level-2

SMOS orbital soil moisture dataset (Kerr et al. 2010).

To validate the performance of the experiments, we

use the reference data from the NCEP Stage IV pre-

cipitation, the Soil Climate Analysis Network (SCAN),

the Climate Reference Network (CRN), and the second

version of the North American Land Data Assimilation

System (NLDAS-2). The NCEP Stage IV precipitation

dataset, available over the contiguous United States at a

spatial resolution of 4km, is a ground-based, radar-derived

product with gauge correction (Lin and Mitchell 2005).

Both the SCAN and CRN networks provide calibrated

soil moisture measurements at depths of 5, 10, 20, 50, and

100cm over the United States (Schaefer et al. 2007;

Diamond et al. 2013). Figure 1 shows a map of 27 selected

SCAN/CRN stations within an area of interest (see Fig. 2),

over which we validate the conducted experiments. The

NLDAS-2 data contain some of the best available land

surface observations and model outputs over the contig-

uousUnited States with a spatial resolution of 0.1258 and a
temporal resolution of 1h (Xia et al. 2012).

b. Configuration of the domain and WRF physics

This study uses WRF version 3.7.1 (Skamarock et al.

2008), compiled with GNU compilers. Figure 2 shows the

configuration of a single domain that covers a large part

of the Great Plains and exhibits strong land–atmosphere

interaction (Koster et al. 2004, 2006). The grid spacing

for the domain is 36km. The top pressure level is set at

50hPa, with 40 layers below. The WRF Model physics

used in this study include theWRF single-moment 6-class

microphysics scheme (Hong and Lim 2006), the Rapid

Radiative Transfer Model longwave radiation scheme

(Mlawer et al. 1997), the Dudhia shortwave radiation

scheme (Dudhia 1989), the revised MM5 similarity land

surface scheme (Jiménez et al. 2012), the Noah land

surface model (Chen and Dudhia 2001), the Yonsei

University (YSU) planetary boundary layer scheme

(Hong et al. 2006), and the Kain–Fritsch cumulus scheme

(Kain 2004).

c. WRF 4D-Var system and precipitation data
assimilation

The WRF data assimilation (WRFDA) system,

developed collaboratively by several agencies and

institutes, is currently maintained by the National Center

for Atmospheric Research (NCAR). This study uses the

4D-Var component of the system. The WRF 4D-Var

system makes use of the incremental 4D-Var formula-

tion to solve for the analysis increments by minimizing a

quadratic cost function. The incremental 4D-Var in-

cludes tangent linear and adjoint models derived from a

simplified version of the full nonlinearWRFModel.More

detailed descriptions of the WRF 4D-Var system can be

found in Huang et al. (2009). The standard control vari-

ables of the WRF 4D-Var system are the streamfunction,

unbalanced velocity potential, unbalanced temperature,

pseudorelative humidity, and unbalanced surface pressure

(Barker et al. 2004). We employ the NMC method

(Parrish andDerber 1992) to estimate domain-dependent,

static background error covariance matrices for the stan-

dard control variables, referred to as option 5 (CV5). We

use the NCEP FNL data in July 2013 as the initial and

FIG. 1. The locations and the names of the selected SCAN and

CRN stations.
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boundary conditions to produce multiple 12- and 24-h

WRF forecasts and compute the background error

covariance using forecasts valid at the same time but

initialized 12 h apart.

In this study, we assimilate 6-h TRMM 3B42 pre-

cipitation data at its native spatial resolution into

the WRF 4D-Var system. We chose 6-h accumulations

because it has been shown that assimilation of pre-

cipitation accumulated at a shorter time than 6h may

not necessarily lead to improved forecasts (Lopez 2011).

We employ a 6-h assimilation window and assimilate 6-h

precipitation accumulation valid at the end of a 6-h

cycle. In addition, we choose a threshold to discard those

precipitation observations that are drastically far from

the forecasts, as explained in Lin et al. (2015). To find an

optimal threshold, we ran small-scale assimilation ex-

periments over the study domain during 10–15 June

2009. We used various thresholds at 4, 6, 8, and 10mm

(6h)21 and found that 6mm (6h)21 leads to the best

forecast skills in terms of the mean absolute error and

correlation.

d. Noah land surface model and soil moisture data
assimilation

The Noah land surface model (Chen and Dudhia

2001) is used to provide land surface heat and moisture

fluxes to theWRFModel. TheNoahmodel is configured

with four soil layers with thicknesses of 10, 30, 60, and

100 cm from top to bottom. Lin et al. (2017) character-

ized the monthly WRF–Noah soil moisture background

error at a spatial resolution of 36 km using the NMC

method and 8-yr WRF–Noah model simulations. The

background error was used to assimilate only SMOS

soil moisture data into the WRF–Noah model using a

1D-Var algorithm. Here, we use the bias-aware soil

moisture background error covariance by Lin et al.

(2017). This study uses a constant value of 0.04m3m23

soil moisture observation error, consistent with the

overall SMOS soil moisture retrieval error (Kerr et al.

2010), over the entire study domain.

Prior to the data assimilation, the original SMOS soil

moisture data are regridded onto the 36-km grids of the

study domain using the nearest-neighbor interpolation

method. The regridded SMOS data are considered as

the measurements of soil moisture in the top 10 cm of

soil, even though it is well understood that the L-band

soil moisture retrievals represent approximately the

soil moisture in the top 5 cm of soil. We assimilate

SMOS descending observations at 0000 UTC and as-

cending observations at 1200 UTC. The SMOS de-

scending overpasses over the eastern United States

(i.e., the right part of a straight-line cutoff approxi-

mately from Missouri to Michigan) are not assimilated

in our experiments because of relatively large time

differences between them and the assimilation time

(see Lin et al. 2017).

e. Modeling framework and experimental design

Figure 3 shows the schematic of the framework of

the combined data assimilation system. The frame-

work employs the WRF 4D-Var system to assimilate

TRMM 3B42 precipitation data (see section 2c) and the

WRF–Noah 1D-Var system to assimilate SMOS soil

moisture data (see section 2d). It is noted that the initial

atmospheric control states are updated only after 4D-Var

assimilation of precipitation, while the initial soil moisture

states are updated after 1D-Var assimilation of soil mois-

ture. Under this two-step data assimilation framework,

FIG. 2. Configuration of a single domain (D01) covering the contiguous United States. The blue dashed lines show

an area of interest where we evaluate the performance of the numerical experiments.
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wefirst assimilate precipitation and then soilmoisture data

independently. We believe that given the different time

constants of atmospheric and soil processes, this two-step

assimilation is reasonable approximation to a fully in-

tegrated simultaneous and joint assimilation. We conduct

four numerical experiments during 1–28 July 2013, as

follows:

(i) OPL: The open-loop run without any data

assimilation.

(ii) PDA: The 4D-Var precipitation data assimilation

experiment, in which 6-h TRMM precipitation rain

rates are assimilated into the WRF–Noah model.

(iii) SDA: The 1D-Var soil moisture data assimilation

experiment, in which instantaneous SMOS soil

moisture measurements are assimilated into the

WRF–Noah model.

(iv) CDA: The combined data assimilation experiment

that includes both (ii) and (iii).

In each 6-h analysis cycle, we obtain the first guess, or

the background state, of soil moisture from the 6-h

forecasts of the previous cycle (the cycling mode), while

the first guess of the atmospheric control states is di-

rectly obtained from the NCEP FNL dataset (the cold-

start mode). In otherwords, we initialize each experiment

every 6 h by using the initial conditions obtained from

the NCEP FNL dataset, except for the soil moisture

states. Two-day forecasts are initialized every 6 h based

on the estimated states without (i.e., OPL) and with data

assimilation (i.e., PDA, SDA, and CDA) (Fig. 4). Out-

put variables from the WRF–Noah model, such as

precipitation, soil moisture, and 2-m air temperature

and humidity, are evaluated over the study area for

quantifying the impacts of data assimilation. We eval-

uate (i) the simulations of soil moisture from the

cycling runs and (ii) the forecasts of precipitation, air

temperature, and air-specific humidity with various

lead times (i.e., from 6 to 48 h) from all of the 2-day

forecast runs. These 2-day forecasts lead to more than

100 forecast runs over the study area (31 3 39 spatial

grids) with a large enough number (.130 000) of grid-

scale samples to assure the robustness of the forecast

evaluation.

f. Bias correction of initial soil moisture conditions

We showed in Lin et al. (2017) that there is a wet

model bias in soil moisture states, largely due to the

existing biases in the NCEP FNL dataset, while SMOS

soil moisture retrievals are relatively less biased over the

study area. Therefore, rather than rescaling satellite

observations onto the model climatology commonly

used in land surface data assimilation (Reichle and

Koster 2004), we estimate the soil moisture bias and

remove it from the input NCEP FNL data. Then, we

study the impact of such soil moisture bias correction on

the WRF–Noah performance. The bias estimates are

obtained by comparing the NCEP FNL soil moisture

with measurements from the selected CRN/SCAN

FIG. 3. The framework of the precipitation and soil moisture data assimilation system.

FIG. 4. A schematic of the assimilation flow. Every 6 h at 0000,

0600, 1200, and 1800 UTC, we obtain the first guesses from the

NCEP FNL data and cycle soil moisture from previous 6-h fore-

casts. The first guesses are not updated for the OPL experiments,

while they are updated in the data assimilation experiments (i.e.,

SDA, PDA, and CDA). We repeat the assimilation flow according

to Fig. 3 and launch a 2-day forecast integration every 6 h.
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gauge data. Over the study area (see Fig. 2), the NCEP

FNL soil moisture data have, on average, a wet bias of

0.08 and 0.01m3m23 in the top 10-cm and lower 10–40-cm

layers, respectively, relative to the gauge data. Here, prior

to any data assimilation, we uniformly remove the soil

moisture biases over the top 40-cm soil layers. When the

soil moisture is unrealistically small or negative, theWRF

Model automatically sets the soil moisture to a minimum

value of 0.02m3m23. Nonetheless, in this study, after bias

correction, none of the pixels have an initial soil moisture

condition less than 0.05m3m23 over the study area.

To better understand the effects of soil moisture bias

correction, we compare the ground-based soil moisture

time series with the outputs from each experiment (i.e.,

OPL, PDA, SDA, and CDA) with and without bias

correction. Figures 5a and 5b show the average soil

moisture values obtained from 27 selected CRN/SCAN

stations and the results within the numerical grids of the

model containing those stations. The difference in soil

moisture is shown in Figs. 5c and 5d. In the top 10-cm soil

layer, bias correction of initial soil moisture conditions

apparently leads to improvement in soil moisture sim-

ulations. However, the improvement vanishes after a

few days. For instance, the difference in simulated soil

moisture with and without bias correction becomes less

than 0.01m3m23 after nearly 2 weeks and remains even

smaller later for theOPL and PDAexperiments. For the

SDA and CDA experiments, the soil moisture differ-

ence becomes less than 0.01m3m23 after approximately

6 days and is nearly negligible (,0.001m3m23) after

2 weeks (see Fig. 5c). For the lower soil layers, the ef-

fects of bias correction are still notable, but to a lesser

extent than the top layer. Over the lower layer, the im-

provement decays slowly over time for the cases of OPL

and PDA, while the impact of bias correction is negli-

gible after four days for the SDAandCDAexperiments.

Overall, for a short-term case, bias correction of initial

soil moisture condition can be helpful. Thus, throughout

the paper, we will report only the experiments with bias-

corrected soil moisture initial conditions.

g. Overview of the temperature and specific humidity
analysis increments in PDA

To understand the effects of the 4D-Var system on air

temperature and specific humidity, we analyze their

analysis increments (analysis minus background). As

SDA updates only land surface soil moisture states, we

narrow down the comparison only to the results of PDA.

Figure 6 shows the analysis increments of temperature

and specific humidity, averaged over the entire study

area (see Fig. 2) and time from 1 to 28 July 2013. It is

found that, on average, PDA increases (decreases) the

FIG. 5. (a),(b) Hourly time series of soil moisture estimates for the top 10-cm and lower 10–40-cm soil layers

averaged across 27 selected stations. Experiments with and without bias correction are shown in solid and dashed

lines, respectively. (c),(d) The difference in soil moisture simulations with and without bias correction.
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temperature (humidity) at the lower atmosphere below

500-hPa geopotential heights. As is evident, the analysis

increments near the land surface are particularly sig-

nificant compared to the results of upper levels in the

atmosphere.

3. Results

In this section, we quantify the impact of combined

data assimilation on predictions of precipitation, soil

moisture, and 2-m air temperature and specific humid-

ity. We first compare the precipitation forecasts against

the NCEP Stage IV dataset (section 3a) and the soil

moisture simulations against soil moisture gauging ob-

servations from SCAN and CRN (section 3b). The

forecasts of 2-m temperature and specific humidity are

verified against the data from NLDAS-2 (section 3c).

We emphasize that the precipitation data assimilation

updates atmospheric but not soil moisture states in each

assimilation cycle, and the soil moisture data assimila-

tion updates only the soil moisture state. These two are

connected via sensible and latent heat fluxes through

which soil moisture states can directly influence the at-

mospheric states of the bottom atmospheric layer. We

will investigate the significance of soil moisture data

assimilation on the forecast skills of precipitation and

near-surface variables. We use several metrics, namely

the bias, root-mean-square error (RMSE), Pearson

cross-correlation coefficient r, equitable threat score

(ETS), false alarm ratio (FAR), and bias score (BS).

These metrics are commonly used for quantifying the

forecast quality. A detailed explanation of these metrics

is included in the appendix.

a. Precipitation forecasts

We compare the 6-h precipitation analyses over the

study area during 1–28 July 2013 against the NCEP

Stage IV dataset (Fig. 7). The results in Fig. 7b show that

PDA has a much lower false alarm ratio than OPL,

except for the extreme rainfall intensity [e.g., rain rates

greater than 20mm (6h)21]. In addition, Fig. 7c shows

that OPL overestimates precipitation with a bias score

FIG. 6. The vertical profiles of the analysis increment of the (a) temperature and (b) specific humidity,

averaged over the study area and for a total of 112 forecast runs initialized every 6 h between 1 and 28

Jul 2013.
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greater than one, while PDA significantly reduces the

precipitation bias. Nevertheless, the bias score is less

than one for rain rates greater than 10mm (6h)21 in

both the OPL and PDA experiments, indicating that the

intensity and location of the precipitation extremes is

not properly captured. Because the false alarm and bias

score metrics are improved in the PDA experiment, it is

not surprising that assimilation of TRMMdata leads to a

higher (better) equitable threat score than the open-

loop experiment (Fig. 7a). However, we can see that

assimilation of SMOS soil moisture data has a marginal

impact on the 6-h precipitation analyses (Fig. 7). This

observation suggests that a longer time scale may be

required for the atmosphere to feel the changes in sur-

face soil moisture.

To characterize the diurnal performance of the data

assimilation of satellite precipitation, in Fig. 8 we

group the precipitation analyses and report the scores

for four different time intervals (i.e., 0000–0600,

0600–1200, 1200–1800, and 1800–2400 UTC). As the

effects of soil moisture data assimilation are marginal on

the precipitation analyses, we confine our consideration

only to OPL and PDA. The most noticeable differ-

ence among different time intervals is that the WRF

open-loop experiment produces significant over-

estimation during 1200–2400 UTC (local daytime). Es-

pecially from 1800 to 2400 UTC, the bias score for

the OPL experiment is significantly greater than one,

which is likely because the WRF Model tends to

overestimate the summertime afternoon convection.

This type of daytime overestimation is also reported

by Lopez (2011). As is evident, assimilation of TRMM

data significantly improves the bias on a diurnal scale,

as well as the false alarm ratio and the equitable threat

score.

We also analyze the quality of precipitation fore-

casts with a lead time of up to 2 days. Figure 9 shows

the quantitative metrics obtained by comparing the

48-h precipitation forecasts with the reference NCEP

Stage IV precipitation during 1–28 July 2013. Note

that the statistics are computed for 6-h rainfall ac-

cumulated between two successive 6-h time intervals.

It is evident that assimilation of TRMM data consis-

tently reduces the bias and RMSE for forecasts be-

yond the 6-h assimilation window. As previously

explained, PDA leads to, on average, an increased

temperature and decreased humidity in the lower

atmosphere, which may reduce the availability of

precipitable water and therefore decrease the amount

of analysis precipitation. For the forecasts with lead

times between 6 and 48 h, the reduction of the bias and

RMSE [see Eqs. (A4)–(A6)] is, on average, 50% and

4%, respectively. In addition, the results show that

after the first 6 h, the difference between OPL and

PDA in terms of correlation is very small, which

suggests that the impact of precipitation data as-

similation is predominately due to improvement in

the intensity of precipitation (e.g., those measured in

the bias and RMSE) rather than its spatial variabil-

ity. In contrast to precipitation data assimilation,

FIG. 7. (a) ETS, (b) FAR, and (c) BS computed based on the 6-h simulated precipitation during 1–28 Jul 2013 at a spatial resolution of

36 km over the area of interest (see Fig. 2) for the OPL, SDA, PDA, and CDA experiments. The statistics are obtained considering the

NCEP Stage IV as the reference.
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assimilation of SMOS soil moisture shows only a

marginal effect on the quality of precipitation fore-

casts with a lead time of less than 18 h. However, for

the precipitation forecasts with a lead time greater

than 24 h, soil moisture data assimilation reduces the

bias and RMSE, on average, by 26% and 2%, re-

spectively. This time lag might be because soil

moisture only directly affects the near-surface con-

ditions, and it takes time to have large and accumu-

lated effects throughout the atmosphere that can

ultimately influence precipitation forecasts. With

the simultaneous assimilation of TRMM and SMOS

data, the improvement in precipitation forecasts is

larger than that from the independent assimilation

of TRMM and SMOS data. On average, over vari-

ous lead times, CDA shows a reduction in the bias

and RMSE in the precipitation forecasts by 57% and

6%, respectively.

b. Soil moisture simulations

We use ground-based soil moisture measurements

from 16 SCAN and 11 CRN stations (see Fig. 1) as a

reference to evaluate the performance of the soil

moisture simulations. Throughout this subsection, we

FIG. 8. As in Fig. 7, but the 6-h precipitation samples are grouped into four different time intervals to reflect the effects of PDA on the

diurnal variation of precipitation. The results of SDA and CDA are not shown.
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compare top 10-cm soil moisture simulations of a 36-

km grid from the study area (see Fig. 2) with pixelwise

collocated gauge measurements at a depth of 5 cm

[section 3b(1)]. The lower 10–40-cm soil moisture

simulations are also compared with the measurements

at a depth of 20 cm [section 3b(2)]. Because of the

inherent uncertainties associated with grid-to-point

comparison, we report the averaged statistics over all

of the chosen stations.

1) TOP-LAYER SOIL MOISTURE

The quality metrics including bias, RMSE, and

correlation of each station are computed by compar-

ing hourly soil moisture measurements of the gauging

stations (see Fig. 1) with the numerical simulations.

Figure 10 shows the mean values and various percentiles

of the quality metrics for each experiment. Table 1

shows the relative improvement (RI) between the open-

loop experiment and the data assimilation experiments.

First, without any data assimilation, OPL overestimates

the top 10-cm soil moisture simulations on average by

0.066m3m23 (Fig. 10a), which is partly caused by the

overestimation of precipitation discussed previously

(see Fig. 7c). The assimilation of TRMM data reduces

the bias by 20% in surface soil moisture simulations,

which can be largely attributed to the improved pre-

cipitation analyses (see section 3a). PDA also leads to a

reduction in RMSE by 10% and an increase in correla-

tion by 9% when compared to OPL (Table 1). Second,

the impact of SMOS data assimilation on the surface soil

moisture simulations is substantially larger than that of

precipitation data assimilation. For instance, the re-

ductions of bias and RMSE in SDA (compared to PDA)

are 57% (20%) and 22% (10%), respectively. SDA also

improves the temporal variation of the time series of

hourly soil moisture through improving the correlation

by 25%. Third, on average, CDA leads to apparent

improvement in the soil moisture simulations in terms of

the bias (73%), RMSE (27%), and correlation (33%).

Figures 10b and 10c also show that CDA leads to the

FIG. 9. (a)–(c) The quality metrics obtained by comparing the precipitation forecasts with various lead times at

a spatial resolution of 36 km over the study area from the OPL, SDA, PDA, and CDA experiments against the

NCEP Stage IV precipitation observations. (d)–(f) RI [Eqs. (A4)–(A6)] obtained by comparing the statistics of the

data assimilation experiments with those of the OPL runs.
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lowest RMSE and the highest correlation, which in-

dicates usefulness of assimilating both soil moisture and

precipitation.

2) LOWER-LAYER SOIL MOISTURE

TheOPL experiment overestimates the lower 10–40-cm

layer soil moisture by about 0.01m3m23 (Fig. 10d),

which appears to be much smaller than the soil moisture

bias in the top 10-cm layer. In general, assimilation

of TRMM and SMOS data has a marginal effect on

the quality of lower-layer soil moisture simulations.

Figures 10d–f show that PDA slightly improves the

quality of hourly soil moisture estimates in the lower soil

layer in terms of bias, RMSE, and correlation. In con-

trast, SDA increases the correlation coefficient but leads

to a negative bias and higher RMSE than OPL, and,

clearly, CDA combines the outcomes of each individual

assimilation of TRMM and SMOS data. However, it can

FIG. 10. The performance of soil moisture simulations in each of the three data assimilation experiments and the

OPL experiment. The mean values and various percentiles of the quality metrics are obtained by comparing the

hourly soil moisture simulations with the observations of 27 selected CRN/SCAN stations. The soil moisture

simulations are obtained from 1 to 28 Jul 2013.
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be seen that none of the three assimilation scenarios

(i.e., PDA, SDA, and CDA) have significant effects in

the lower soil layers. This issue is likely attributed to the

lack of observability for deep soil layers in the designed

data assimilation system. Other factors, such as vertical

soil heterogeneity, may also play a role as the WRF–

Noah model assumes homogeneous textures across the

soil layers. Many past studies have also reported similar

observations, highlighting challenges in improving sim-

ulations of root-zone soil moisture through data assim-

ilation (Reichle and Koster 2005; Yin et al. 2014;

Blankenship et al. 2016).

c. Air temperature and specific humidity

In this subsection, we evaluate the effect of data as-

similation on predictions of temperature and specific

humidity at 2m. Throughout the WRF–Noah model

integration, the temperature and specific humidity at

2m are computed for a diagnostic purpose and are

mainly affected by soil moisture via the land surface

sensible and latent heat fluxes and the atmospheric

states of the lower planetary boundary layer. To com-

pare the temperature and humidity forecasts with the

reference dataset, the reference NLDAS-2 data were

interpolated onto the 36-km grids of the study area using

the area-average conservation option within the Earth

System Modeling Framework.

Figure 11 shows the computed bias, RMSE, and cor-

relation obtained by comparing the 2-m temperature

forecasts with lead times of 6–48h with the NLDAS-2

data. The open-loop experiment underestimates the

temperature forecasts with an average bias of 22.4K.

Assimilation of TRMM data consistently reduces the

bias and RMSE over different lead times. On average,

over the lead times from 6 to 48h, PDA leads to the

relative reduction of bias and RMSE by 11% and 5%,

respectively. The reduction of the bias andRMSE is likely

attributed to the observed positive temperature analysis

increment in the lower atmosphere (see section 2g).While

the impacts of PDA remain nearly constant in time, the

effect of SDA on the temperature forecasts increases

with lead times. Specifically, for the temperature fore-

casts with a lead time of 6h, the reduction of bias and

RMSE is 3%, while for the 2-day forecasts, the re-

duction of bias and RMSE due to soil moisture data

assimilation reaches 11% and 6%, respectively. This

observation is consistent with our previous findings that

the effects of soil moisture data assimilation manifest

themselves in a time scale beyond 18h (see Fig. 9).When

the TRMM and SMOS data are assimilated together

(CDA), this leads to improved temperature forecasts

with a reduction of bias (17%) and RMSE (9%), aver-

aged over all the lead times. Nonetheless, the effect of

data assimilation is small in terms of correlation, which

suggests that improvements are largely in terms of biases

and not variation of the temperature signal.

Analogously, we demonstrate the impacts of data as-

similation on the forecasts of near-surface specific humidity

(Fig. 12). Despite the underestimation in temperature, the

results show that the open-loop experiment overestimates

2-m specific humidity by approximately 1.4gkg21, aver-

aged over various lead times (Fig. 12a). Assimilation of the

TRMMprecipitation consistently improves the 2-m specific

humidity forecasts over various lead times, leading to an

average reduction of bias and RMSE by 17% and 6%,

respectively. The effects of soil moisture data assimila-

tion are relatively small in the beginning but increase

slightly for larger lead times. The results show that for

the forecasts with a lead time of 6h, SDA reduces the

bias in specific humidity by 15%, but the reduction be-

comes 21% for larger lead times averaged between 24

and 48 h. On average, over various lead times, assimi-

lation of SMOS data reduces the RMSE by 7%. As

compared to SDA and PDA, the results with CDA are

encouraging in terms of reduction in the bias and

RMSE, which are 33% and 11%, respectively, highest

among all the assimilation scenarios. Analogous to the

temperature, the effect of data assimilation on the

forecast of specific humidity is marginal in terms of

the correlation coefficient.

4. Discussion and conclusions

In this study, we quantified the relative impact of as-

similating TRMM precipitation and SMOS soil mois-

ture data into the coupled WRF–Noah model. The

model outputs of precipitation forecasts, soil moisture,

and 2-m temperature and specific humidity forecasts

were evaluated against a set of reference observations. It

is found that the OPL experiment tends to overestimate

TABLE 1. RI [see Eqs. (A4)–(A6)] in hourly soil moisture sim-

ulations. The percentages are obtained by comparing the metrics

averaged over all the gauge stations of each data assimilation

experiment (i.e., PDA, SDA, and CDA) with those of the OPL

experiment. The soil moisture simulations are obtained from the

WRF–Noah simulations during 1–28 Jul 2013.

Relative improvement in

Experiment Bias RMSE Correlation

Top 10-cm layer PDA 20% 10% 9%

SDA 57% 22% 25%

CDA 73% 27% 33%

10–40-cm layer PDA 84% 5% 6%

SDA 258% 23% 18%

CDA 290% 22% 3%
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precipitation, especially in the middle of the day, and

overestimates top 10-cm soil moisture simulations by

about 0.066m3m23. In addition, the OPL experiment

results in a bias of22.4K and 1.4 gkg21 for the forecasts

of 2-m temperature and specific humidity, respectively.

The overestimation of the open-loop precipitation is

likely the reason that leads to the overestimation of soil

moisture, which often leads to a larger evaporation rate

and therefore influences the predictions of 2-m tem-

perature and humidity.

The statistics demonstrate the effectiveness of both

precipitation and soil moisture data assimilation and

further highlight the advantage of the combined data

assimilation. Table 2 summarizes the relative improve-

ment in terms of the bias and RMSE for the data as-

similation experiments. The results of 2-day forecasts

also show that the effect of 6-h TRMMdata assimilation

on the forecasts remains constant beyond a 6-h lead

time. However, the effect of the SMOS data assimilation

on the forecasts is relatively small for a lead time of less

than 18h and becomes more pronounced for longer lead

times. This delayed response makes sense from a phys-

ical standpoint, and understanding the assimilation im-

pacts on the forecasts of land surface and atmospheric

variables with lead times greater than 2 days needs

further investigation. Ultimately, the CDA includes the

features of both precipitation and soil moisture data

assimilation and leads to the highest improvement.

The results and conclusions are certainly subject to

the quality of initial and lateral boundary conditions,

which were obtained from the NCEP FNL datasets in

this study. Testing the data assimilation system with

other global datasets, such as the ECMWF products, is

recommended. We can also extend the study to use

newer precipitation and soil moisture products, such as

the Integrated Multisatellite Retrievals for Global Pre-

cipitation Measurement (IMERG) and those from the

Soil Moisture Active Passive (SMAP) satellite. IMERG

has a finer spatial and temporal coverage than the

TRMM 3B42 dataset does (Hou et al. 2014), while the

FIG. 11. (a)–(c) The bias, RMSE, and correlation between the 2-m temperature forecasts with various lead times

and the NLDAS-2 data. (d)–(f) RI in the bias, RMSE, and correlation are estimated according to Eqs. (A4)–(A6).
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estimates of soil moisture from SMAP are slightly more

accurate than those from SMOS (Chan et al. 2016).

High-resolution forecasts and data assimilation ex-

periments are needed to understand the impact on the

spatial organization of surface heat fluxes when pre-

cipitation forecast resolutions approach convection

scales. This would also mean that the used constant

precipitation error may not be sufficient in high-

resolution precipitation data assimilation. We are cur-

rently working on multiplicative characterization of

precipitation observation error, as well as the inclusion

of other control states such as the rain/cloudmixing ratio

in the 4D-Var analysis procedure to better accommo-

date to the challenge in high-resolution data assimila-

tion. Because we estimated the background error for the

atmospheric states and soil moisture states in-

dependently, the presented framework does not allow

the precipitation observations to directly influence soil

moisture states and the soil moisture observations to

directly impact atmospheric states such as the air

FIG. 12. As in Fig. 11, but for the forecasts of 2-m specific humidity.

TABLE 2. The average RI in the bias and RMSE for precipitation, near-surface air temperature, and specific humidity, obtained by

averaging statistics over various lead times from the 2-day forecast experiments (see Figs. 9, 11, 12). The values inside the parentheses refer

to those for the lead times equal or larger than one day.

Improvement in bias Improvement in RMSE

PDA SDA CDA PDA SDA CDA

Precipitation 47% 17% (26%) 57% 4.8% 1.5% (2.2%) 5.8%

2-m temperature 11% 8% (10%) 17% 5.4% 5.1% (5.9%) 8.6%

2-m specific humidity 17% 20% (21%) 33% 5.7% 6.9% (6.9%) 10.7%
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temperature and humidity. Future research should be

devoted to overcome this limitation.
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APPENDIX

Performance Metrics

This appendix briefly explains the performance met-

rics used in the paper, including the bias, RMSE, r, ETS,

FAR, and BS. These metrics are commonly used for

model verification in geosciences. More details can also

be found in Wilks (2006). The formulas of the bias,

RMSE, and r are defined as follows:
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whereMi andOi are themodel outputs and the observed

references, respectively, and the overbar indicates the

sample mean. To quantify the impact of data assimila-

tion, the relative improvement (RI) for the bias, RMSE,

and correlation are computed as follows:
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where OL and DA refer to the open-loop and data as-

similation experiments, respectively.

The ETS, FAR, and BS metrics are computed based

on a classic 2-by-2 contingency table that detects

whether a rain rate exceeds a certain threshold. The

table includes four components: (i) the total number of

correct hits, (ii) the total number of false alarms, (iii) the

total number of misses, and (iv) the total number of

occasions that both forecasts and observations are

under a specific threshold,

�
a b

c d

�
5

�
hits false alarms

misses no forecasts

�
, (A7)

with a sample sizeN5 a1 b1 c1 d. Based on Eq. (A7),

the ETS, the FAR, and the BS are defined as follows:

ETS5
a2 a

r

a1 b1 c2 a
r

, (A8)

FAR5
b

a1 b
, (A9)

BS5
a1 b

a1 c
, (A10)

where ar is the expected number of correct hits due to a

random chance, as ar 5 (a1 b)(a1 c)/N. ETS measures

the fraction of observations that are predicted correctly

and penalizes both false alarms and misses. ETS 5 1

means a perfect forecast, while ETS # 0 means that the
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model has no forecast skill. In Eq. (A9), FAR measures

the fraction of false alarms and ranges between 0 and 1,

indicating the best and the worst possible scenarios, re-

spectively. Furthermore, Eq. (A10) illustrates over-

estimation for BS . 1 and underestimation for BS , 1.
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