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Abstract

Objectives

Primary familial brain calcification (PFBC) is a rare neurological disease often inherited as a
dominant trait. Mutations in four genes (SLC2042, PDGFB, PDGFRB, and XPRI) have been
reported in PFBC patients. Of these, point mutations or small deletions in SLC20A42 are most
common. Thus far, only one large deletion covering entire SLC20A2 and several smaller,
exonic deletions of SLC20A42 have been reported. The aim of this study was to identify the

causative gene defect in a Finnish PFBC family with three affected patients.

Materials and methods

A Finnish family with three PFBC patients and five unaffected subjects was studied. Sanger
sequencing was used to exclude mutations in the coding and splice site regions of SLC2042,
PDGFRB and PDGFB. Whole-exome (WES) and whole-genome sequencing (WGS) were

performed to identify the causative mutation. A SNP array was used in segregation analysis.

Results

Copy number analysis of the WGS data revealed a heterozygous deletion of ~578 kb on
chromosome 8. The deletion removes the 5 UTR region, the noncoding exon 1 and the

putative promoter region of SLC20A2 as well as the coding regions of six other genes.

Conclusions

Our results support haploinsufficiency of SLC20A42 as a pathogenetic mechanism in PFBC.
Analysis of copy number variations (CNVs) is emerging as a crucial step in the molecular
genetic diagnostics of PFBC, and it should not be limited to coding regions, as causative

variants may reside in the noncoding parts of known disease-associated genes.
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Primary familial brain calcification linked to deletion of 5° noncoding region of
SLC20A42

Introduction

Primary familial brain calcification (PFBC, also previously known as idiopathic basal ganglia
calcification, IBGC, or Fahr’s disease) is a rare neurological disorder with a variable
phenotype. The disease onset is usually between 30 and 50 years and the typical symptoms
include both movement disorders (parkinsonism, dystonia, ataxia, chorea) and
neuropsychiatric disturbances such as psychosis, dementia and frontal or subcortical
cognitive dysfunction. The typical findings, bilateral and symmetric hydroxyapatite deposits,
are seen in basal ganglia, dentate nuclei and thalamus in patients with normal serum levels of
calcium, phosphate, alkaline phosphatase, and parathyroid hormone. However, variation in
the clinical manifestations is common even within families, and asymptomatic individuals

with calcifications have been reported (1-3).

PFBC is often inherited as a dominant trait. The first causative gene, SLC20A2, was reported
in 2012 by Wang et al. (2) Since the original report, many other studies have confirmed that

mutations in this gene account for up to 40 to 50 % of PFBC (4, 5). The other causative genes

are PDGFRB on 5q32 (6), PDGFB on 22q13.1 (7) and XPRI on 1g25.1 (8).

SLC20A2 codes for an inorganic phosphate (P1) transporter, PiT-2 that also functions as a
retroviral receptor (9-11). Mutations in SLC20A42 result in impaired phosphate transport and
accumulation of phosphate in the extracellular matrix in the affected brain regions (2, 12).
Functional studies suggest that the deleterious consequences of SLC20A42 mutations are due
to haploinsufficiency rather than dominant-negative effects (2). Studies on Slc20a2 knock-out
mice have shown that PiT-2 also has an important role in maintaining the normal low level of
Pi in the cerebrospinal fluid (CSF) (13). Jensen et al. hypothesized that increased CSF Pi

concentration due to defective PiT-2 could lead to pericyte transformation to a mineralizing
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cell type and thus calcification of blood vessels (13). Another disease mechanism is proposed
by the functions of PDGFRB and PDGFB which code for the platelet-derived growth factor
receptor B and its ligand, platelet-derived growth factor B, respectively. Mutations in both
Pdgfb and Pdgfrb have been linked to pericyte decifiency and impaired blood-brain barrier
(BBB) integrity in mouse models (14, 15), which might lead to accumulation of calcium
deposits in the brain (6, 7). The protein coded by XPRI is a retroviral receptor that has been
shown to mediate phosphate export (16). Mutations in XPR/ inhibit phosphate export and are
likely to result in increased concentrations of intracellular phosphate (8). This might lead to
decreased PiT-2-driven Pi uptake from the CSF, resulting in elevated CSF Pi concentration,

as hypothesized by Jensen et al. (13).

Pathogenic SLC20A2 mutations are typically missense (4, 5, 17-24) and nonsense mutations
(4,17, 25, 26), small deletions (2, 4, 5, 17, 19-21, 27-30) or splice site mutations (4, 5, 19).
Two studies have broadened the mutational spectrum of SLC2042: In 2014, a large deletion
encompassing the entire coding region of SLC20A42 was reported (25). In a recent study by
David and coworkers, smaller deletions covering exon 2, exon 4 and exons 4 and 5 of
SLC20A42 were found in four patients in a cohort of 24 PFBC patients (31). Thus, analysis of
copy number variations (CNVs) is emerging as a crucial step in molecular genetic diagnostics

of PFBC.

Here we report a novel heterozygous deletion covering the 5° UTR and most likely the
promoter region of SLC20A42 and extending up to FNTA. The mutation segregates with PFBC
in a Finnish family with three affected subjects. To our knowledge, this is the first report of a

Finnish family with PFBC and the first SLC20A42 mutation in the noncoding region.
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Materials and methods

Subjects

We studied a PFBC family with three affected patients, the proband (II:2), his sister (II:5) and
daughter (II1:1). The inheritance pattern was consistent with autosomal dominant disease.

The pedigree of the family is shown in Figure 1b. All patients were clinically examined at the
Lapland central hospital. Two affected patients and five unaffected persons from the family
were recruited for the study. No DNA from the deceased patient (I1:2) was available for
genetic testing. The study was approved by the Ethics Committee of Oulu University
Hospital. Informed consent was obtained from all individual participants included in the

study.

The proband, I1:2, presented with symmetrical blepharospasm and bilateral facial spasm at
the age of 66 years. Botulinumtoxin A injection treatment had only minor effect on the
spasms. No additional findings were noted in clinical neurological examination. Brain
magnetic resonance imaging (MRI) and computed tomography (CT) studies showed bilateral
calcifications in basal ganglia and cerebellum (Figure 1a). Lowered perfusion in these brain
areas was also noted in single positron emission tomography (SPECT) examination. The

patient died of prostate cancer at the age of 69 years.

Patient II:5 had motor deficits, balance problems and memory disturbance. Clinical
neurological examination was performed at 70 years. The patient had slight apraxia, mild
balance impairment and lower limb ataxia but no dystonic movements. Mini Mental State

Examination (MMSE) score was 19/30 consistent with mild dementia. Brain CT showed
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calcifications in corona radiata and in cerebellum, anterior to lateral ventricles and vascular

degeneration. No hippocampal atrophy was seen.

The third affected patient, III:1, was diagnosed with torticollis spasmodica at the age of 29
years. She responded well to botulinumtoxin A injection treatment. Brain MRI showed

bilateral calcifications in the basal ganglia, thalamus and nucleus dentatus.

Serum levels of calcium, phosphate, alkaline phosphatase and parathyroid hormone were

normal in all three patients.

Genetic methods

DNA was extracted from peripheral EDTA blood with the Illustra Nucleon BACC3 Genomic
DNA Extraction Kit (GEHealthcare, Little Chalfont, Buckinghamshire, UK). The coding
regions and flanking intronic splice sites of SLC2042 (NM_006749.4), PDGFRB
(NM_002609.3) and PDGFB (NM_002608.3) were amplified by PCR and sequenced in both
directions using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems,

CA, USA).

Whole exome sequencing (WES) of the two affected patients and one unaffected subject was
performed by the Institute for Molecular Medicine Finland (FIMM, University of Helsinki,
Finland). Exome enrichement was done using the SeqCap EZ Human Exome Library v3.0
(Roche Nimblegen, Basel, Switzerland) and the resulting libraries were sequenced on the
[llumina HiSEQ platform (Illumina, San Diego, CA, USA) to a mean target coverage of

58.8x (II:5), 62.4x (I1I:1), and 31.3x (III:2). Sequences were aligned to GRCh37/hgl9,
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variants called using the variant calling pipeline (vcp) developed at FIMM and the resulting

variants were annotated with ANNOVAR(32).

Whole genome sequencing (WGS) of one affected and one unaffected subject was done by
NGI Sweden (The National Genomics Infrastructure, Science for Life Laboratory, Solna,
Sweden). Libraries were prepared using the TruSeq DNA PCR-free kit and sequenced on a
HiSeq X Platform (Illumina, San Diego, CA, USA) to a mean coverage of 41.78x (III:1) and
41.75x (III1:2). Sequences were aligned to GRCh37/hg19. Variant calling pipeline followed
the GATK best practice guidelines. Small indels and SNVs were annotated with SnpEff(33)
and ANNOVAR. Structural variants and larger copy number variants were identified by

cn.mops(34) and Manta (https://github.com/Illumina/manta).

Additionally, five samples (II:3, II:4, I1:5, 1I:6, I1:7) were genotyped using genome-wide SNP

array, the HumanOmniExpress Bead chip (Illumina, San Diego, USA).

Results

Sanger sequencing ruled out coding and splice site mutations in SLC2042, PDGFRB and
PDGFB. Exome sequencing did not result in any potentially causative variants shared by the
two affected patients. Copy number analysis of the WGS data (subject I1I:1) revealed a
heterozygous deletion of 578,164 bp on chromosome 8§ (genomic coordinates chr§:
42,338,721 - 42,916,885) (Supporting table 1, Supporting figure 1). The deletion was also
visible in the SNP array data (subject II:5) with breakpoints at rs11780448 (chr 8:
42,325,328) and rs13248091 (chr8: 42,929,226 bp) (Supporting figure 2). The unaffected

subject I1I:2 did not have the deletion based on WGS (Supporting table 1, Supporting figure

).
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The deletion removes the noncoding exon 1, 5° UTR region and the putative promoter region
of SLC20A2 as well as the whole coding regions of six other genes (SMIM19, CHRNB3,
CHRNAG6, THAP1, RNF170, and HOOK?3). The other deletion breakpoint is located between

second and third exon of FNTA.

In order to test whether the deletion segregates with PFBC in this family, we genotyped

additional four unaffected family members on a SNP array. The combination of WGS and
SNP array data showed complete segregation of the deletion with the disease: the deletion
was found in the two affected family members from whom DNA was available for testing,

and was absent in the five unaffected relatives (Figure 1b, Supporting figure 2).

Discussion

Large deletions in causative genes for PFBC have been described in a few families. The first
causative large copy number variant (CNV) for PFBC was reported by Baker el al. in a
Canadian family (25). A partial deletion of PDGFB was subsequently described by Nicolas et
al. (35). Recently, smaller exonic deletions of SLC20A42 were reported in four patients (31).
We identified a ~578 kb deletion in a Finnish family with PFBC using both WGS and a SNP
array. The exact breakpoints of the deletion could be identified from the whole genome

sequencing data.

The deletion abolishes the first noncoding exon, the 5° UTR region and most likely the
promoter region of SLC20A2 leaving the entire coding region intact. The coding regions of
six other genes (SMIM19, CHRNB3, CHRNAG6, THAPI, RNF170, and HOOK3) are deleted.
At the centromeric breakpoint, the putative promoter region and first two exons of FNTA are

deleted but the remaining exons are present in two copies (Figure 1c).
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The deletion reported by Baker et al. covers the entire coding region of SLC20A42 and most
likely results in reduced expression (25). The exonic deletions reported by David et al.
presumably lead to loss of function by removing the translation initiation codon (exon 2
deletion), causing a frameshift (exon 4 deletion) or removing two transmembrane domains
(deletion of exons 4 and 5) (31) . The deletion reported here starts between the first two exons
of SLC20A42 removing the noncoding exon 1, 5> UTR and the putative promoter region
upstream of the transcription start site. Generally no transcript is produced if the promoter
region is missing. We propose that the deletion leads to reduced expression of SLC2042 and

is thus causative of PFBC in the Finnish family.

Baker et al. reported dystonia in 8 of 11 affected individuals of the family with SLC2042
deletion (25). They hypothesized that deletion of THAPI might contribute to this as
mutations in 7THAP1 have been linked to idiopathic torsion dystonia of mixed type (DY T6,
OMIM 602629). Interestingly, the youngest patient described here also had cervical dystonia
(torticollis spasmodica). The possible phenotypic consequences of the other deleted genes are
currently unclear. Genes affected by the deletion code for small integral membrane protein
(SMIM19), beta and alpha subunits of the neuronal cholinergic nicotinic receptor (CHRNB3
and CHRNAI), endoplasmic reticulum membrane ubiquitin ligase (RNF170), cytosolic
coiled-coil microtubule binding protein (HOOK3), and farnesyltransferase (FNTA). Apart
from RNF170, most of them have not been linked to neurological diseases. A missense
mutation (p.Arg199Cys) in RNF170 has been shown to segregate with autosomal dominant
sensory ataxia in two families (36) but, as also noted by Baker et al.(25), the suggested
disease-mechanism was gain-of-function. Thus, the possible effects of deletion of one

RNF170 allele are still unknown.

Conclusions
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Our results give further support for haploinsufficiency of SLC20A42 as a pathogenetic route in
PFBC and suggest that deletion of regulatory regions of SLC20A2 is sufficient to cause the
disease. The partial deletion of SLC20A42 described here demonstrates that copy number
analysis is essential when screening for mutations in known causative genes in primary
familial brain calcification. Ideally, CNV analysis should not be limited to coding regions as
causative copy number variations may reside in regulatory regions of known disease-

associated genes.
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Titles and legends to figures

Figure 1. (a) Brain CT of patient II:2 showing calcification (marked with arrows) in basal
ganglia and cerebellum. (b) Pedigree of the family with screenshots of SNP array data and
the deletion breakpoint in SLC20A42 in WGS data visualized using the Integrative Genomics
Viewer (IGV) (37, 38). Circles mark females, squares males. Affected persons are marked by
a filled symbol and deceased persons with a slashed symbol. DNA samples were available
from persons marked with an asterisk. (¢) Schematic drawing of the deletion area on 8p11.2.
The deletion reported by Baker et al. (25) is shown for comparison. Orientations of the genes

are marked with arrows.
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Supplementary table 1. WGS analysis results showing the presence of heterozygous deletion affecting SLC20A2 in PFBC patient's sample (grey-shaded columns).

1a. cn.mops analysis results from the deletion area (CN2 indicates two copies and CN1 one copy of a genomic segment).

CHROM [ START END WIDTH | Reference_sample 1 | Reference sample_2 | PFBC_sample | PFBC_control | GENE

8 42339001 | 42429000 | 90000 | CN2 CN2 CN1 CN2 SLC20A2;SMIM19

8 42431001 | 42543000 | 112000 | CN2 CN2 CN1 CN2

8 42546001 | 42799000 | 253000 | CN2 CN2 CN1 CN2 CHRNB3;CHRNAG6;THAP1;RNF170;MIR4469;HOOK3
8 42800001 | 42813000 | 13000 |CN2 CN2 CN1 CN2 HOOK3

8 42816001 | 42843000 | 27000 |CN2 CN2 CN1 CN2 HOOK3

8 42844001 | 42877000 | 33000 |CN2 CN2 CN1 CN2 HOOK3

8 42878001 | 42917000| 39000 |CN2 CN2 CN1 CN2 HOOK3;FNTA

1b. Manta analysis results from the deletion area (0/1 indicates heterozygous deletion, 0/0 indicates wild type).

CHROM

POS

ID

REF

ALT

FILTER

INFO

PFBC_sample

PFBC_control

Reference_samplel | Reference_sample2

8

42338721

MantaDEL:159946

<DEL>

PASS

END=42916885

0/1:PASS

0/0:PASS

0/0:PASS 0/0:PASS
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