128 research outputs found

    Bona fide colour: DNA prediction of human eye and hair colour from ancient and contemporary skeletal remains

    Get PDF
    Background: DNA analysis of ancient skeletal remains is invaluable in evolutionary biology for exploring the history of species, including humans. Contemporary human bones and teeth, however, are relevant in forensic DNA analyses that deal with the identification of perpetrators, missing persons, disaster victims or family relationships. They may also provide useful information towards unravelling controversies that surround famous historical individuals. Retrieving information about a deceased person's externally visible characteristics can be informative in both types of DNA analyses. Recently, we demonstrated that human eye and hair colour can be reliably predicted from DNA using the HIrisPlex system. Here we test the feasibility of the novel HIrisPlex system at establishing eye and hair colour of deceased individuals from skeletal remains of various post-mortem time ranges and storage conditions.Methods: Twenty-one teeth between 1 and approximately 800 years of age and 5 contemporary bones were subjected to DNA extraction using standard organic protocol followed by analysis using the HIrisPlex system.Results: Twenty-three out of 26 bone DNA extracts yielded the full 24 SNP HIrisPlex profile, therefore successfully allowing model-based eye and hair colour prediction. HIrisPlex analysis of a tooth from the Polish general Władysław Sikorski (1881 to 1943) revealed blue eye colour and blond hair colour, which was positively verified from reliable documentation. The partial profiles collected in the remaining three cases (two contemporary samples and a 14th century sample) were sufficient for eye colour prediction.Conclusions: Overall, we demonstrate that the HIrisPlex system is suitable, sufficiently sensitive and robust to successfully predict eye and hair colour from ancient and contemporary skeletal remains. Our findings, therefore, highlight the HIrisPlex system as a promising tool in future routine forensic casework involving skeletal remains, including ancient DNA studies, for the prediction of eye and hair colour of deceased individuals

    Development and optimization of the VISAGE basic prototype tool for forensic age estimation

    Get PDF
    The VISAGE (VISible Attributes through GEnomics) consortium aims to develop, optimize and validate prototype tools to broaden the use of DNA intelligence methods in forensic routine laboratories. This includes age estimation based on the quantification of DNA methylation at specific CpG sites. Here, we present the VISAGE basic prototype tool for age estimation targeting 32 CpGs from five genes ELOVL

    Model-based prediction of human hair color using DNA variants

    Get PDF
    Predicting complex human phenotypes from genotypes is the central concept of widely advocated personalized medicine, but so far has rarely led to high accuracies limiting practical applications. One notable exception, although less relevant for medical but important for forensic purposes, is human eye color, for which it has been recently demonstrated that highly accurate prediction is feasible from a small number of DNA variants. Here, we demonstrate that human hair color is predictable from DNA variants with similarly high accuracies. We analyzed in Polish Europeans with single-observer hair color grading 45 single nucleotide polymorphisms (SNPs) from 12 genes previously associated with human hair color variation. We found that a model based on a subset of 13 single or compound genetic markers from 11 genes predicted red hair color with over 0.9, black hair color with almost 0.9, as well as blond, and brown hair color with over 0.8 prevalence-adjusted accuracy expressed by the area under the receiver characteristic operating curves (AUC). The identified genetic predictors also differentiate reasonably well between similar hair colors, such as between red and blond-red, as well as between blond and dark-blond, highlighting the value of the identified DNA variants for accurate hair color prediction

    Development of an epigenetic age predictor for costal cartilage with a simultaneous somatic tissue differentiation system

    Get PDF
    Age prediction from DNA has been a topic of interest in recent years due to the promising results obtained when using epigenetic markers. Since DNA methylation gradually changes across the individual's lifetime, prediction models have been developed accordingly for age estimation. The tissue-dependence for this biomarker usually necessitates the development of tissue-specific age prediction models, in this way, multiple models for age inference have been constructed for the most commonly encountered forensic tissues (blood, oral mucosa, semen). The analysis of skeletal remains has also been attempted and prediction models for bone have now been reported. Recently, the VISAGE Enhanced Tool was developed for the simultaneous DNA methylation analysis of 8 age-correlated loci using targeted high-throughput sequencing. It has been shown that this method is compatible with epigenetic age estimation models for blood, buccal cells, and bone. Since when dealing with decomposed cadavers or postmortem samples, cartilage samples are also an important biological source, an age prediction model for cartilage has been generated in the present study based on methylation data collected using the VISAGE Enhanced Tool. In this way, we have developed a forensic cartilage age prediction model using a training set composed of 109 samples (19–74 age range) based on DNA methylation levels from three CpGs in FHL2, TRIM59 and KLF14, using multivariate quantile regression which provides a mean absolute error (MAE) of ± 4.41 years. An independent testing set composed of 72 samples (19–75 age range) was also analyzed and provided an MAE of ± 4.26 years. In addition, we demonstrate that the 8 VISAGE markers, comprising EDARADD, TRIM59, ELOVL2, MIR29B2CHG, PDE4C, ASPA, FHL2 and KLF14, can be used as tissue prediction markers which provide reliable blood, buccal cells, bone, and cartilage differentiation using a developed multinomial logistic regression model. A training set composed of 392 samples (n = 87 blood, n = 86 buccal cells, n = 110 bone and n = 109 cartilage) was used for building the model (correct classifications: 98.72%, sensitivity: 0.988, specificity: 0.996) and validation was performed using a testing set composed of 192 samples (n = 38 blood, n = 36 buccal cells, n = 46 bone and n = 72 cartilage) showing similar predictive success to the training set (correct classifications: 97.4%, sensitivity: 0.968, specificity: 0.991). By developing both a new cartilage age model and a tissue differentiation model, our study significantly expands the use of the VISAGE Enhanced Tool while increasing the amount of DNA methylation-based information obtained from a single sample and a single forensic laboratory analysis. Both models have been placed in the open-access Snipper forensic classification website.</p

    Global skin colour prediction from DNA

    Get PDF
    Human skin colour is highly heritable and externally visible with relevance in medical, forensic, and anthropological genetics. Although eye and hair colour can already be predicted with high accuracies from small sets of carefully selected DNA markers, knowledge about the genetic predictability of skin colour is limited. Here, we investigate the skin colour predictive value of 77 single-nucleotide polymorphisms (SNPs) from 37 genetic loci previously associated with human pigmentation using 2025 individuals from 31 global populations. We identified a minimal set of 36 highly informative skin colour predictive SNPs and developed a statistical prediction model capable of skin colour prediction on a global scale. Average cross-validated prediction accuracies expressed as area under the receiver-operating characteristic curve (AUC) ± standard deviation were 0.97 ± 0.02 for Light, 0.83 ± 0.11 for Dark, and 0.96 ± 0.03 for Dark-Black. When using a 5-category, this resulted in 0.74 ± 0.05 for Very Pale, 0.72 ± 0.03 for Pale, 0.73 ± 0.03 for Intermediate, 0.87±0.1 for Dark, and 0.97 ± 0.03 for Dark-Black. A comparative analysis in 194 independent samples from 17 populations demonstrated that our model outperformed a previously proposed 10-SNP-classifier approach with AUCs rising from 0.79 to 0.82 for White, comparable at the intermediate level of 0.63 and 0.62, respectively, and a large increase from 0.64 to 0.92 for Black. Overall, this study demonstrates that the chosen DNA markers and prediction model, particularly the 5-category level; allow skin colour predictions within and between continental regions for the first time, which will serve as a valuable resource for future applications in forensic and anthropologic genetics

    Swarming in shallow waters

    Get PDF
    A swarm is a collection of separate objects that move autonomously in the same direction in a concerted fashion. This type of behavior is observed in ensembles of various organisms but has proven inherently difficult to realize in artificial chemical systems, where the components have to self-assemble dynamically and, at the same time, propel themselves. This paper describes a class of systems in which millimeter-sized components interact hydrodynamically and organize into dissipative structures that swarm in thin fluid layers. Depending on the geometry of the particles, various types of swarms can be engineered, including ensembles that rotate, follow a &quot;leader&quot;, or are pushed in front of a larger particle

    Testing the impact of trait prevalence priors in Bayesian-based genetic prediction modeling of human appearance traits

    Get PDF
    The prediction of appearance traits by use of solely genetic information has become an established approach and a number of statistical prediction models have already been developed for this purpose. However, given limited knowledge on appearance genetics, currently available models are incomplete and do not include all causal genetic variants as predictors. Therefore such prediction models may benefit from the inclusion of additional information that acts as a proxy for this unknown genetic background. Use of priors, possibly informed by trait category prevalence values in biogeographic ancestry groups, in a Bayesian framework may thus improve the prediction accuracy of previously predicted externally visible characteristics, but has not been investigated as of yet. In this study, we assessed the impact of using trait prevalence-informed priors on the prediction p
    corecore