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A B S T R A C T   

The prediction of appearance traits by use of solely genetic information has become an established approach and 
a number of statistical prediction models have already been developed for this purpose. However, given limited 
knowledge on appearance genetics, currently available models are incomplete and do not include all causal 
genetic variants as predictors. Therefore such prediction models may benefit from the inclusion of additional 
information that acts as a proxy for this unknown genetic background. Use of priors, possibly informed by trait 
category prevalence values in biogeographic ancestry groups, in a Bayesian framework may thus improve the 
prediction accuracy of previously predicted externally visible characteristics, but has not been investigated as of 
yet. In this study, we assessed the impact of using trait prevalence-informed priors on the prediction performance 
in Bayesian models for eye, hair and skin color as well as hair structure and freckles in comparison to the 
respective prior-free models. Those prior-free models were either similarly defined either very close to the 
already established ones by using a reduced predictive marker set. However, these differences in the number of 
the predictive markers should not affect significantly our main outcomes. We observed that such priors often had 
a strong effect on the prediction performance, but to varying degrees between different traits and also different 
trait categories, with some categories barely showing an effect. While we found potential for improving the 
prediction accuracy of many of the appearance trait categories tested by using priors, our analyses also showed 
that misspecification of those prior values often severely diminished the accuracy compared to the respective 
prior-free approach. This emphasizes the importance of accurate specification of prevalence-informed priors in 
Bayesian prediction modeling of appearance traits. However, the existing literature knowledge on spatial 
prevalence is sparse for most appearance traits, including those investigated here. Due to the limitations in 
appearance trait prevalence knowledge, our results render the use of trait prevalence-informed priors in DNA- 
based appearance trait prediction currently infeasible.   

1. Introduction 

Prediction of externally visible characteristics (EVCs) of an individ
ual solely based on genetic information, also referred to as DNA phe
notyping or forensic DNA phenotyping (FDP), has become a focus in 
human genetic research and applications, such as in forensics, ancient 

DNA analysis and other areas. In forensic cases where conventional 
DNA-profiling methods, typically based on short tandem repeat (STR) 
markers, fail to identify the crime scene sample donor, because the 
evidential DNA-profile does not match the DNA-profile of any of the case 
suspects or anybody in the criminal offender DNA database, FDP may 
provide significant leads for police investigations to find unknown 
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perpetrators [1–3]. In such cases, FDP can contribute significantly by 
narrowing down a potentially large number of putative sample donors to 
a smaller group of individuals that carry the FDP-derived EVC infor
mation on which the police can then focus with further investigation. 
Groups that do not carry such information can be left out from the police 
investigation. Thus far, for eye, hair and skin color various underlying 
genes have been identified, predictive DNA markers have been identi
fied, DNA tests suitable for analyzing such genetic markers in forensic 
DNA samples and statistical prediction models have been developed 
[4–10], and some of these DNA test systems have been forensically 
validated [9,11,12]. For traits such as freckles and hair structure, some 
associated genetic markers and the first predictive models have already 
been published, respectively [13–16]; however, no forensically vali
dated tool has been established so far. Prediction models for some other 
EVCs are currently under investigation [17–20]. 

Categorical prediction of eye, hair and skin color is often based on 
multinomial logistic regression (MLR) using established genetic marker 
panels. For instance, the IrisPlex test and model for eye color prediction 
consists of a set of 6 single-nucleotide polymorphisms (SNPs) [4,9,21]. 
Its extension to eye and hair color, the HIrisPlex test and model is based 
on 24 SNPs in total [11]. The latest extension is the HIrisPlex-S test and 
model, which consists of 41 SNPs and allows simultaneous prediction of 
eye, hair and skin color from a DNA sample [12]. All three prediction 
models are publicly available via https://hirisplex.erasmusmc.nl/. An 
alternative statistical tool for the prediction of eye, hair and skin color 
from genotype data is offered by Snipper [8,22,23], which uses pairwise 
likelihood ratios to present prediction outcomes, while other pigmen
tation prediction tool models were also developed (see [24] for a re
view). While some of these models show high prediction accuracies for 
some pigmentation categories, more research is currently under way in 
order to improve existing tools, either by including more SNP predictors 
after they have been identified in large-scale gene mapping studies, or 
by using alternative prediction methods. 

Bayesian classification is a statistical approach that considers the 
data-independent probability of each category, or class, as well as the 
data-derived likelihood that a given subject or object belongs to a 
particular category, and bases the classification decision upon these 
probabilities. More specifically, the Bayesian approach combines a prior 
probability distribution on the different categories with the density 
probabilities obtained from the observed samples, yielding the posterior 
distribution used to predict category, or class, membership of an indi
vidual or object [25]. Prior probabilities for parameters may reflect 
previous evidence, but also purely subjective assessment or available 
information on these parameters from the past, before any evidence 
from the sample set at hand is considered. Incorporation of such prior 
knowledge in the data analysis may potentially increase the prediction 
accuracy, namely in situations where the prediction model does not 
include all causal genetic factors and where the environment contributes 
significantly to the trait variance via non-genetic factors. In both situa
tions, trait prevalence-informed priors may then act as proxies for the 
yet unknown causal genetic factors and non-genetic factors in a popu
lation, group or region. In the framework of appearance DNA prediction, 
including FDP, inference of the biogeographic ancestry of an unknown 
DNA sample from which EVCs are to be predicted, together with the use 
of the trait class prevalence in such biogeographic ancestry group as 
prior in the EVC prediction model may improve the prediction accuracy. 
However, despite the already existing approaches for EVC prediction, 
the impact of trait prevalence priors on EVC prediction accuracies has 
not been investigated thus far. 

For putting prior-based EVC prediction into practice within the 
concept of FDP, one would envision to first carry out forensic DNA 
ancestry testing on the unknown crime scene DNA samples and use the 
obtained ancestry outcome as guidance for allocating the appropriate 
trait class prevalence data for the EVC to be predicted, and finally use 
them as priors in EVC prediction. Based on the DNA-identified 
geographic region of ancestry of the tested DNA donor, allocated trait 

class prevalence data for different populations from such region would 
be averaged (or combined in another suitable way), in order to likely 
represent continental or sub-continental groups, and would then be used 
as priors for Bayesian EVC prediction on the same DNA sample previ
ously used for ancestry testing. Alternatively, to avoid population 
averaging, DNA ancestry testing would need to be specific for a partic
ular population, which not only requires the availability of trait preva
lence data for such population but also the ability of forensic DNA 
ancestry to work on the population level. 

Here, we assess the impact of incorporating prior knowledge on EVC 
trait prevalence in a Bayesian setting on improving the accuracy of DNA- 
based EVC prediction, but also potential pitfalls caused by mis
specification of such prior probabilities. To this end, we consider EVCs 
such as eye, hair and skin color for which prior-free genetic prediction 
models have previously been established [9,11,12], but also traits such 
as hair structure and freckles for which the first prediction models were 
recently proposed without considering priors [13,15,16]. Given the 
sparsity or even lack of spatial or population-specific prevalence infor
mation available for each of these EVCs [24], we investigated the impact 
of prevalence-informed priors across a grid in the complete space of all 
possible values for each trait category, thereby emulating the (mis-) 
specification of the informative prior values. Prediction modelling was 
performed by applying previously proposed DNA predictors in datasets 
from different populations inside and outside of Europe. We report on 
standard prediction performance measures for each trait category 
separately and for all model measurements, and then compare 
prior-informed model-based prediction against prior-free models. 
Furthermore, we demonstrate the effect of priors on the overall pre
diction accuracy of the EVCs investigated. 

2. Materials and methods 

2.1. Data sets 

For prediction modelling of eye color, hair color, skin color, hair 
structure and freckles we used various datasets, most of which were used 
previously for predicting these EVCs. For eye, hair and skin color we 
applied datasets that were part of the previously used data to establish 
the IrisPlex model for eye color, the HIrisPlex model for hair color, and 
the HIrisPlex-S model for skin color prediction, comprising of samples 
from different continental ancestries [9,11,12]. In particular, we used 
1095 samples for eye, 1702 for hair and 1318 for skin color prediction 
(Table 1). For hair structure, we applied data from 2043 samples from 
different ancestries that were previously used as model testing dataset in 
the EUROFORGEN study on hair structure prediction [15]. Finally, for 
freckles, we used data from 1801 unrelated samples from the TwinsUK 
dataset, comprising European individuals from the United Kingdom 
[26]. For all traits, the available datasets were split into 80 % for model 
training and 20 % for model validation (Table 1). 

As genetic markers in the prediction modelling, we used previously 
established DNA predictors for eye, hair, skin color, hair shape and 
freckles, respectively. In particular, for eye color prediction, we used the 
6 SNPs from the previous IrisPlex eye color model [9]; for hair color 
prediction we used the 22 hair color informative SNPs from the previous 
HIrisPlex hair color model [11]; for skin color prediction, we used the 36 

Table 1 
EVC-specific data sets used for prediction model training and testing with and 
without the use of prevalence-informed priors.  

Appearance trait Training set (80 %) Test set (20 %) References 

Eye color 876 219 [9,11,12] 
Hair color 1361 341 [9,11,12] 
Skin color 1054 264 [9,11,12] 
Hair Structure 1634 409 [15] 
Freckles 1440 361 [26]  
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skin color informative SNPs from the previous HIrisPlex-S skin color 
model [12]; for hair shape prediction, we used the 38 SNPs from the 
previous EUROFORGEN study on hair shape prediction [15]; and for 
freckles prediction, we used the 13 out of the 22 SNPs recently proposed 
for this purpose by Kukla-Bartoszek [13]. Not using the remaining 9 
previously proposed freckles DNA predictors is explained by data 
availability and quality control issues (see below). Samples with 
incomplete genotype information per each EVC were excluded from our 
analysis. 

2.2. Appearance trait categories 

We considered the following trait categories:  

• Eye color: Blue, Intermediate, Brown  
• Hair color: Blond, Brown, Red, Black  
• Skin color: Very Pale, Pale, Intermediate, Dark, Dark to Black  
• Hair structure: Straight, Wavy, Curly  
• Freckles: Freckled, Non-freckled 

All traits were treated as categorical variables and were coded as 
‘1’, ‘2’, ‘3’ etc. up to the number of considered categories, which 
ranged between two for the presence or absence of freckles and five for 
skin color. In the course of our study, five-class problems turned out to 
be extremely computationally expensive and prohibitive for a 
comprehensive analysis. To overcome this problem, we reduced the 5- 
class category problem for skin color into two 4-class problems by 
either merging the first two categories very pale and pale or the last 
two dark or dark to black. Predictive DNA markers were considered 
under an allele-based model and, correspondingly, numerically coded 
as 0 for homozygosity of the major, i.e. more frequent, allele, 1 for 
heterozygosity and 2 for homozygosity of the minor, i.e. less frequent, 
allele. We did not consider interaction terms in the prediction models, 
as recently proposed for instance for freckles [13], in order to allow a 
consistent derivation of the posterior probabilities in the Bayesian 
approach across all EVCs. That means that for all EVCs, the models 
were defined considering the additive effects of the corresponding 
genetic markers. 

2.3. Data cleaning 

All data sets had undergone previously described quality control [9, 
11,12,15] and could be readily used in the prediction models, except for 
the TwinsUK data set for freckles prediction. For this reason, we applied 
standard quality control on the raw Twins UK data in order to be able to 
use them further in our analysis. For the freckles prediction we considered 
the markers recently proposed from Kukla-Bartoszek [13]; however, only 
14 out of the previously reported 22 markers were available in the 
TwinsUK dataset we received for this study up on request from the 
Department of Twin Research, King’s College London, of which 13 passed 
the quality-control and were thus used for freckles prediction modeling. 
More specific, we intended to remove markers that showed a strong de
viation from Hardy-Weinberg equilibrium (p < 0.001), excessive hetero
zygosity (>0.001) [27], more than two alleles, an imputation info score of 
less than 0.8 or very low minor allele frequencies (MAF < 0.01). One of 
the markers did not pass this step of quality control, and was thus 
excluded from our analysis. Out of sample pairs with excessive 
identity-by-descent (IBD) allele sharing (>0.2), one randomly selected 
sample was removed in order to assure (approximate) independence. 
Finally, we performed a principal-components analysis (PCA) on the 
merged data set of TwinsUK and the complete dataset of the 1000 Ge
nomes population data [28], comprising known ancestry, in order to 
identify and subsequently remove all samples with large-scale differences 
in ancestry. The latter were defined by the first two principal components, 
which were sufficient to cluster the individuals in population groups 
(PC1 ≥ 0.01 and PC2 ≤ -0.02). From this data set, we extracted those 

performed using PLINK v1.9 [29] and ‘RStudio’ v 3.4.4 [30]. 

2.4. Statistical analysis 

2.4.1. Prior-free trait prediction 
For the prediction of eye, hair and skin color, we used standard 

multinomial logistic regression (MLR), as established by Liu et al. [4]. 
We also used MLR for the three-class problem of predicting hair struc
ture [15], whereas standard binomial logistic regression (BLR) was used 
for predicting freckle presence or absence [13]. Individuals were pre
dicted, or classified, as presenting with a specific trait category ac
cording to the highest posterior probability across all categories, with no 
minimal threshold imposed on this probability, although being explic
itly equivalent to a minimum threshold of 1 by the number of trait 
categories. For all traits included in our study, each of the trait-specific 
data sets was randomly split into two independent subsets (Table 1), 
with 80 % being used for model training (training set) and 20 % for 
model prediction (test set). 

2.4.2. Prior-incorporated trait prediction 
In the absence of detailed trait prevalence information on virtually 

all externally visible characteristics (EVCs) considered here for different 
populations or continental groups, we sought to assess the impact of 
priors on the prediction performance by exhaustively exploring the 
space of all possible tupels, i.e. an ordered list with respect to categories, 
of prior probability values. More specific, we performed Bayesian clas
sification based on either MLR or BLR, again depending on the number 
of trait classes, by including the prior information in the calculation of 
the posterior probabilities. For a 3-class trait, the model was formed as 
follows [4]: 

ln
(

p2

p1

)

= α2 +
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β2(π2)jxj  
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where the pi (i = 1,2,3) denote the probabilities of each category and αi,

βi (i = 2,3) the respective regression coefficients, with the first category 
being used as reference, while (π1, π2, π3)∑3

i=1
πi=1 

forms the tupels of prior 

values for the three categories and k refers to the number of genetic 
markers included in the model, e.g. k = 6 for the IrisPlex model, whereas 
j is an index referring to those genetic markers. Estimates for αi, βi were 
obtained by the MLR model from the respective training data sets 
(Table 1). Analysis was conducted in R version 3.4.3 [31] by using the 
nnet R package [32]. Following the standard Bayesian prediction 
framework, posterior probabilities were then obtained as the product 
between the data-dependent likelihood and the prior information: 
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where τi, πi , fi (i = 1,2, 3) denote the posterior probabilities, the prior 
probabilities and the likelihoods for each of the three categories, 
respectively. From the above formulas, the posterior probabilities for 
each trait category were eventually obtained as: 
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where xj denotes the number of minor (less frequent) alleles of the jth 
SNP and the terms αi and βi (i = 2, 3) are the model parameters. As 
before, indicator j in the sum denotes the sum across all genetic markers. 

For simplicity, we did not consider interaction terms. This renders our 
approach only an approximation for the previously published freckles 
model. Models for the 2- and 4-class problems were defined in a similar 
fashion. A sample was classified into that category which yielded the 
maximum posterior probability, again without explicitly applying any 
minimal threshold. 

With lacking trait prevalence information, we exhaustively explored 
the impact of priors by considering all possible tupels of prior proba
bilities in order to assess potential prediction improvement but also the 
risk caused by mis-specifying prior values. To this end, prior probabili
ties in turn assumed values from 0.01 to 0.99, with step size 0.01, while 

Fig. 1. Impact of the choice of trait prevalence priors on sensitivity in EVC prediction modeling from genetic data. Results are presented for a Bayesian approach 
using a multinomial logistic regression model for predicting four pigmentation trait categories, namely those of eye color (EC; first line), hair color (HC; second line) 
and skin color (SC; third line: darkest categories merged; fourth line: palest categories merged), where the vertical line corresponds to a prior-free prediction. 
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requiring that those probabilities for all categories sum to unity. Note 
that prior-free prediction is equivalent to a Bayesian prediction model 
where the prior probabilities correspond to the relative trait category 
frequencies in the training set. 

2.4.3. Prediction performance assessment 
Prediction performance was evaluated in the respective test data sets 

(Table 1). We calculated commonly used measures of test accuracy, 

namely sensitivity, specificity, positive predictive value (PPV), negative 
predictive value (NPV), area-under-curve (AUC) and overall accuracy 
for all possible tupels of prior probabilities and subsequently summa
rized their distribution. In lay terms, sensitivity denotes the proportion 
of correctly predicted samples among all who manifest the trait category 
of interest (true-positive rate), whereas specificity denotes the propor
tion of correctly predicted samples among all that do not manifest the 
trait category of interest (true-negative rate). On the other hand, a PPV 

Fig. 2. Impact of the choice of trait prevalence priors on specificity in EVC prediction modeling from genetic data. Results are presented for a Bayesian approach 
using a multinomial logistic regression model for predicting four pigmentation trait categories, namely those of eye color (EC; first line), hair color (HC; second line) and 
skin color (SC; third line: darkest categories merged; fourth line: palest categories merged), where the vertical line corresponds to a prior-free prediction. 
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refers to the proportion of correct classifications among all predictions of 
the trait category of interest, while an NPV refers to the proportion of 
correct classifications among all predictions other than the trait category 
of interest. The AUC denotes the area under the receiver-operating 
characteristic (ROC) curve which is obtained by varying the threshold 
used for the classification decision and can be interpreted as an indicator 
for the separability of classes when using the particular classification 
model. Except for freckles, which comprise only two categories, we 
performed multiclass ROC analysis, which carries out pairwise com
parisons across all categories (one class vs. all other classes). For 
example, for eye color the following comparisons were conducted: “Blue 
vs. Non-Blue”, “Intermediate vs. Non-Intermediate” and “Brown vs. 
Non-Brown”. Finally, the overall model accuracy refers to the number of 
correct predictions divided by the total number of predictions made. As 
pointed out by Caliebe et al. [33], FDP does not operate in a 
diagnostic-test environment where (bio-)markers are being used to infer 
the presence of causal factors or conditions and where prediction is done 
in the opposite direction of causation. Instead, causal genetic markers, 
or proxies thereof, are used to predict the outcome along the causal 
direction. Thus, for FDP the most relevant performance measures are the 
predictive values (PPV and NPV). All analyses were performed in R 
v3.4.3 [30], using the packages nnet [32] and caret [34] for model 
building and performance assessment calculation, respectively, and 
package caTools [35] for multiclass AUC calculation. For visualization 
of our results, we used the package plot3D [36] and for better inter
pretability the standard kernel density estimation was used. 

3. Results 

The use of trait prevalence-informed priors usually had a strong 
impact on the performance of the prediction model, although the extent 
differed between EVCs and also between categories of the same EVC (see 
below). We found that prediction performance of prior-free models 
could be improved by a substantial proportion of tupels of prior values in 
the respective models. On the other hand, and perhaps not surprisingly, 
a substantial proportion of prior tupels led to a deteriorated prediction 
performance compared to the respective prior-free model. 

3.1. Impact of trait prevalence-informed priors on sensitivity and 
specificity 

With few exceptions, sensitivity (Fig. 1) and specificity (Fig. 2) were 
strongly affected by variation in trait prevalence-informed prior values. 
A particular choice of priors could shift sensitivity usually in both di
rections from that of the prior-free model, often even approaching the 
extreme values of 0 or 1, respectively. All traits showed a strong 
dependence of their prediction sensitivity on the choice of prior values, 
most strongly for blue and intermediate eye color, blond and brown hair 
color, hair structure and freckles. Skin color categories seemed to be less 
affected by the choice of prior values especially when the darkest cat
egories were merged, but not when the palest categories were merged. 
Notable exceptions were dark and dark to black skin color, which 
appeared barely affected by the choice of prior values. In general, 
specificity of predicting lighter eye and skin color was more strongly 
impacted by changing prior values than darker tones, as were straight 
and wavy hair structure categories as well as the presence of freckles. 
Similarly, blond and brown hair colors were more strongly affected 
compared to the categories of red and black hair color. Strikingly, dark 
skin and hair color, but also red hair and curly hair structure appeared 
almost insensitive in their prediction specificity when it comes to the use 
of prevalence priors. Interestingly, the probability of a shift away from 
the prior-free prediction differed between the directions as well as the 
average extent of this shift for both sensitivity (Table 2) and specificity 
(Table 3) across all EVCs. In general, we noticed that most of the prior 
tupels were above or equal to the prior- free value for all EVCs apart 
from a few exceptions. These exceptions included some skin color 

categories such as very pale and intermediate, whose sensitivity seemed 
to be lower than that of the prior-free approach for most prior tupels. 
The majority of prior tupels for the specificity of blue and intermediate 
eye color also resulted into lower values than the prior-free approach. 

Of note, the distributions of sensitivity and specificity across the 
space of possible prior values assumed an almost discrete form for skin 
color when the darkest categories merged, most prominently for the 
light skin categories. Predicting dark and dark to black skin colors by 
using prevalence priors does not show any difference from the perfor
mance of the prior-free approach, also in the case where these two 

Table 2 
Shift in sensitivity in EVC prediction modeling from genetic data for the prior- 
based models compared to the prior-free models.  

Trait Category Below [%] Above [%] 

Eye color Blue 35.6 64.4  
Intermediate 38.6 61.4  
Brown 28.9 71.1 

Hair color Blond 51.4 48.6  
Brown 49.8 50.1  
Red 56.6 43.4  
Black 0.0 100.0 

Skin color (4/5) Very Pale 78.9 21.1  
Pale 55.7 44.3  
Intermediate 63.1 36.9  
Dark/Dark to Black 0.0 100.0 

Skin color (1/2) Very Pale/Pale 48.9 51.1  
Intermediate 48.9 51.1  
Dark 0.0 100.0  
Dark to Black 0.0 100.0 

Hair structure Straight 38.3 61.7  
Wavy 59.0 41.0  
Curly 98.9 1.1 

Freckles Freckled/Non-freckled 49.5 50.5 

Proportion of prior tupels resulting in sensitivity values below and above the 
value for the prior-free approach, respectively. 
Skin color (4/5) is referring to the skin color prediction when the two darkest 
categories of dark and dark to black were merged and considered as one single 
category. Similarly Skin color (1/2) is referring to the case when the two palest 
categories of very pale and pale were merged and considered as one. 

Table 3 
Shift in specificity in EVC prediction modeling from genetic data for the prior- 
based models compared to the prior-free models.  

Trait Category Below [%] Above [%] 

Eye color Blue 52.5 47.5  
Intermediate 60.7 39.3  
Brown 27.7 72.3 

Hair color Blond 52.8 47.2  
Brown 49.4 50.6  
Red 43.5 56.5  
Black 24.9 75.1 

Skin color (4/5) Very Pale 52.8 47.2  
Pale 53.8 46.2  
Intermediate 41.2 58.8  
Dark/Dark to Black 100.0 0.0 

Skin color (1/2) Very Pale/Pale 48.9 51.1  
Intermediate 48.9 51.1  
Dark 0.0 100.0  
Dark to Black 0.0 100.0 

Hair structure Straight 59.0 41.0  
Wavy 39.7 60.3  
Curly 41.6 58.4 

Freckles Freckled/Non-freckled 49.5 50.5 

Proportion of prior tupels resulting in specificity values below and above the 
value for the prior-free approach, respectively. 
Skin color (4/5) is referring to the skin color prediction when the two darkest 
categories of dark and dark to black were merged and considered as one single 
category. Similarly Skin color (1/2) is referring to the case when the two palest 
categories of very pale and pale were merged and considered as one. 
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categories were considered as a single one. 

3.2. Impact of trait prevalence-informed priors on positive and negative 
predictive values 

Similar to the results for sensitivity and specificity, positive predic
tive values (PPV; Fig. 3) and negative predictive values (NPV; Fig. 4) 
were, with few exceptions, strongly affected by the choice of prior values 
for EVCs such as eye and hair color. Quite similarly, the impact was 

again strongest for freckles and hair structure. More specifically for the 
latter, PPV appeared to be quite sensitive for all categories in the change 
of prior values, while the impact on NPV seems to be larger for all cat
egories apart from curly hair. Regarding skin color, the impact of 
prevalence priors on PPV and NPV was very small when the darkest 
categories were merged. When merging the palest categories, the impact 
of different prior values was very small only for the categories of dark 
and dark to black. 

The values of PPV and NPV differed regarding the direction and also 

Fig. 3. Impact of the choice of trait prevalence priors on positive predictive values (PPV) in EVC prediction modeling from genetic data. Results are 
presented for a Bayesian approach using a multinomial logistic regression model for predicting four pigmentation trait categories, namely those of eye color (EC; first 
line), hair color (HC; second line) and skin color (SC; third line: darkest categories merged; fourth line: palest categories merged), where the vertical line corresponds 
to a prior-free prediction. 
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the average extent for each of the considered traits when priors were 
incorporated in the model (Tables 4 and 5). For example, for freckles we 
observed that most of the prior tupels incorporated in the model seem to 
perform better compared to the prior free approach for both PPV and 
NPV. However, for most of the other traits, we observed that only almost 
half of the prior tupels showed a better performance when compared to 
the model without priors, while the other half seemed to show an 
inferior performance but only for specific categories with respect to both 
measurements. For example, the brown eye color category showed a 

high percentage above or equal to the prior-free value for PPV as well as 
NPV, while for blue and intermediate eye categories the percentage 
above or equal the prior-free approach is ranging around 50 %. 

Red and black hair color appeared to be barely affected by the choice 
of prior tupels compared to blond and brown especially for NPV, while 
freckles and eye color showed in general high susceptibility in both 
measurements, with the only exception of the brown eye color category 
which seemed less impacted. Generally, we observed small effects for 
skin color when dark and dark to black categories were considered as 

Fig. 4. Impact of the choice of trait prevalence priors on negative predictive values (NPV) in EVC prediction modeling from genetic data. Results are 
presented for a Bayesian approach using a multinomial logistic regression model for predicting four pigmentation trait categories, namely those of eye color (EC; first 
line), hair color (HC; second line) and skin color (SC; third line: darkest categories merged; fourth line: palest categories merged), where the vertical line corresponds 
to a prior-free prediction. 
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one combined category, while merging pale and very pale categories 
resulted in being more sensitive to the choice of the prior values. For hair 
structure, the NPV of the curly category was slightly impacted, while the 
PPV seemed to be very sensitive to prior tupel choice. 

3.3. Impact of trait prevalence-informed priors on AUC and overall 
accuracy 

Finally, we assessed the overall performance by means of area-under- 
curve (AUC) and overall accuracy values. We generally observed only a 

small impact of the choice of prior values on AUC for all EVCs tested 
(Fig. 5). More specifically, all categories for hair structure and hair color 
appeared to be barely affected in AUC by the varying prior tupels, with 
brown, red and black showing a smaller impact compared to blond. Blue 
and brown eye colors were also barely affected, while intermediate eye 
color appeared a bit more susceptible. Similar to the aforementioned 
EVCs, the effect of priors on skin color categories was generally small, 
either when the palest either when the darkest categories were merged. 
The category of pale/very pale skin color appeared to perform worse in 
the model when priors were incorporated compared to the prior-free 
approach. AUC for freckles showed independence from the choice of 
prior values since its value remained stable for all possible prior tupels. 

Regarding AUC values, most of the categories showed that almost 
half of the prior tupels performed above or equal to the prior-free 
approach (Table 6). There were few exceptions, such as hair structure 
and freckles, where most of the proportions were above the prior-free 
AUC value. Regarding very pale and pale/very pale, almost all prior 
prediction values seem to perform worse than the prior-free approach. 

In comparison to AUC, overall prediction accuracy (Fig. 6) was much 
more affected by the choice of prior values. All five EVCs showed sub
stantial susceptibility to the choice of priors reflected in the overall ac
curacy. Notably, there was some room for improvement for overall 
prediction accuracy except from hair structure, which seemed to 
perform worse compared to the prior-free approach. However, the 
overwhelming majority of prior tupels led to accuracy deterioration 
(Table 7). We also noticed that misspecification of priors often caused a 
deterioration in the prediction performance measurements for some 
traits as well as in the overall accuracy (Fig. 6). 

4. Discussion 

In the present study, we aimed at assessing the impact of using trait 
prevalence-informed priors on the prediction accuracy of an expanded 
set of EVCs, including eye, hair and skin color as well as hair structure 
and freckles. Our study was motivated by the question if such prior in
formation, possibly representing trait class prevalence in biogeographic 
ancestry groups, may improve the prediction accuracy of traits over 
prior-free models. For all EVCs except freckles, we used for our models 
the same predictive markers as applied in the previously established 
prediction models [9,11,12,15]. Although due to data availability issues 
the number of predictors was lower in our freckles prediction modeling 
than previously [13] this discrepancy shall not affect our main outcomes 
for freckles significantly, since we applied the same reduced marker set 
to both the model with and without priors. Regarding the prior infor
mation, we surprisingly noticed that there is a limited spatial and 
population-specific trait prevalence information available for hair, skin 
and eye color, hair structure [24] and even non-existent for other traits 
such as freckles. We therefore exhaustively investigated the impact of 
the choice of prior values for the different trait categories on a 
fine-grained grid of all possible sets, or tupels, of values to obtain a 
general picture of the impact of priors on prediction performance. To 
this end, we trained and tested Bayesian versions of multinomial logistic 
regression (MLR) and binomial logistic regression (BLR) models, 
respectively, and compared their performance to the respective 
prior-free versions, using different trait-specific data sets. 

Our results showed that the use of trait prevalence-informed priors 
can have a strong impact on the performance of the prediction models 
for the 5 EVCs tested. Such use carries some potential to improve the 
prediction of most EVCs and some of their categories compared to a 
prior-free approach, as evidenced by a substantial proportion of prior 
tupels with better performance statistics. However, we also found large 
proportions of prior tupels that led to inferior prediction results, indi
cating the risk that the misspecification of those priors may lead to a 
gross deterioration in the model performance. This deterioration could 
be explained by the fact that the true prevalence values are unknown. 
The prior-free approach is influenced by the proportions of the 

Table 4 
Shift in PPV in EVC prediction modeling from genetic data for the prior-based 
models compared to the prior-free models.  

Trait Category Below [%] Above [%] 

Eye color Blue 54.5 41.7  
Intermediate 59.3 24.3  
Brown 37.4 62.6 

Hair color Blond 63.2 30.3  
Brown 49.8 50.2  
Red 45.3 54.7  
Black 60.9 39.1 

Skin color (4/5) Very Pale 60.5 16.6  
Pale 82.1 17.9  
Intermediate 52.8 47.2  
Dark/Dark to Black 0.0 100.0 

Skin color (1/2) Very Pale/Pale 50.8 49.2  
Intermediate 69.7 30.3  
Dark 0.0 100.0  
Dark to Black 0.0 100.0 

Hair structure Straight 37.0 56.1  
Wavy 83.4 10.5  
Curly 50.9 44.1 

Freckles Freckled/Non-freckled 33.3 50.5 

Proportion of prior tupels resulting in positive-predictive values (PPV) values 
below and above the value for the prior-free approach, respectively. In cases 
where percentages above and below the prior-free approach do not sum to 100 is 
obtained due to the occurrence of NAs in this model measurements. Thus, those 
observations were omitted. 
Skin color (4/5) is referring to the skin color prediction when the two darkest 
categories of dark and dark to black were merged and considered as one single 
category. Similarly Skin color (1/2) is referring to the case when the two palest 
categories of very pale and pale were merged and considered as one. 

Table 5 
Shift in NPV in EVC prediction modeling from genetic data for the prior-based 
models compared to the prior-free models.  

Trait Category Below [%] Above [%] 

Eye color Blue 49.1 50.9  
Intermediate 53.1 46.9  
Brown 41.5 58.5 

Hair color Blond 58.5 41.5  
Brown 50.0 50.0  
Red 70.6 29.4  
Black 44.5 55.5 

Skin color (4/5) Very Pale 64.9 35.1  
Pale 64.3 35.7  
Intermediate 54.3 45.7  
Dark/Dark to Black 100.0 0.0 

Skin color (1/2) Very Pale/Pale 45.8 54.2  
Intermediate 50.8 49.2  
Dark 0.0 100.0  
Dark to Black 0.0 100.0 

Hair structure Straight 71.3 27.7  
Wavy 45.6 54.4  
Curly 100.0 0.0 

Freckles Freckled/Non-freckled 42.4 50.5 

Proportion of prior tupels resulting in negative-predictive values (NPV) below 
and above the value for the prior-free approach, respectively. 
Skin color (4/5) is referring to the skin color prediction when the two darkest 
categories of dark and dark to black were merged and considered as one single 
category. Similarly Skin color (1/2) is referring to the case when the two palest 
categories of very pale and pale were merged and considered as one. 
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categories in the data set. Random splitting into separate training (80 %) 
and test (20 %) datasets, as performed here for all EVCs, resulted in 
approximately equal proportions for each of the trait categories in these 
two data sets, respectively. In consequence, the trained model was well 
adapted to the category proportions in the test data set, possibly leading 
to some over-fitting of the model. This may have led to a slight over
estimation of the performance of the prior-free models. Accurate trait 
prevalence specification is of utmost importance to obtain reliable and 
accurate predictions. However, with the lack of such information, the 

application of prior-incorporating Bayesian approaches for EVC pre
diction in forensic cases appears not feasible at this stage. 

Given the lack of spatial or population-specific prevalence information 
for the EVCs considered in this study, which represented a significant 
obstacle to our analysis, we were not able to compare the performance of 
prior-incorporating and prior-free approaches against a gold standard. As 
gold standard we should have had reliable population-representative prior 
values for all EVCs and their categories, which, however, are not available. 
Therefore, we explored the impact of priors across the whole space of 

Fig. 5. Impact of the choice of trait prevalence priors on the area-under-curve (AUC) in EVC prediction modeling from genetic data. Results are presented 
for a Bayesian approach using a multinomial logistic regression model for predicting four pigmentation trait categories, namely those of eye color (EC; first line), hair 
color (HC; second line) and skin color (SC; third line: darkest categories merged; fourth line: palest categories merged), where the vertical line corresponds to a prior- 
free prediction. 
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possible tupels. Another possible interpretation of our approach, given the 
lack of knowledge about the underlying “truth” regarding the knowledge 
on trait prevalence over geographic space, is that the priors resemble 
differential costs for misclassification, which may also be an interesting 
future approach in forensic applications. 

Little susceptibility of the prediction outcome to the choice of prior 
values, represented by likelihood ratio values of large magnitude 
compared to those of the priors, likely reflects a large extent of genetic 
determination of a trait or a particular trait category and that a large 
proportion of the causal genetic variants determining this trait, or at 
least their strongly correlated proxies, are already included in the pre
diction model [5,37–39]. This agrees with the statement of Caliebe et al. 
[33] that trait prevalence values provide no (or little) additional infor
mation if all (or almost all) genetic trait-determining variants are 
included as predictors in the model, i.e. that the prediction is indepen
dent of the population. From all EVCs and their categories investigated 
here, red hair color prediction comes closest to this, as red hair is 
determined by only one gene, MC1R, from which multiple DNA variants, 
most of them being non-synonymous DNA variants that are likely causal, 
are included in the hair color prediction model based on the HIrisPlex 
markers for hair color prediction used here. For complex traits or trait 
categories, however, dozens or even hundreds of genetic factors will 
contribute to the trait and usually only a fraction of them is known and 
included in the prediction model. It is assumed that all EVCs and EVC 
categories, including those tested here besides red hair are complex 
traits or trait categories determined by large numbers of genes, respec
tively. This was already demonstrated for hair and skin color based on 
large-scale genome-wide association studies (GWAS) [40,41], and 
therefore is also expected for eye color for which such a large-scale 
GWAS is currently pending. For hair shape and freckles the previous 
GWAS were not yet on such large scale, but those multiple genes that 
were successfully identified showed mostly small effect sizes and 
explained only a fraction of the estimated heritability [42,43]; only 
large-size GWAS will be able to increase the explained heritably in the 
future. For complex phenotypes, use of prevalence values may actually 
increase prediction accuracy if specified correctly, because they contain 
information on, and can act as proxies for, those variants that also 
contribute but are not included in the model. 

The strong dependency of prediction performance on priors for most 
traits and categories further reflects that many, if not most, predictions 
are made based on only moderately different posterior probabilities and, 
in turn, likelihoods do not differ strongly between the categories, 
because not all causal factors are yet known and could therefore be 
included in the prediction models. Use of priors may then easily shift 
classification decisions, thereby simply facilitating a trade-off between 
sensitivity and specificity as well as PPV and NPV in the absence of in
formation on true trait prevalence values. Interestingly, the AUC 
appeared to be largely unaffected by changing prior tupels. 

Both observations, the potential for prediction improvement by use 
of priors as well as the risk of inferior performance when those priors are 
mis-specified, motivate future studies. An important and preferable way 
would be to identify more causal genetic factors involved in EVC etiol
ogy, thereby obliterating the need for proxies of those causal factors. 
However, given their likely small and at most moderate effects, this 
would require very large data sets for future studies to identify such 
genetic variants. For instance, a recent GWAS on hair color tested more 
than 290,000 individuals in an European discovery dataset that led to 
the identification of 124 associated independent genetic loci at genome- 
wide significance, of which 111 were novel [40]. However, most of these 
DNA variants will not be causal themselves, because of the focus of 
commonly used SNP microarrays on markers that allow for good 
imputation of other, common markers (‘imputation backbone’), while 
providing only limited numbers of SNPs centered on gene regions or 
selected phenotypic relevance (‘contents enrichment’). 

Another area for future research is to collect, for as many populations 
from as many geographic regions that are relevant based on the 

phenotypic variation of the EVCs to be predicted, trait prevalence data 
on the same or higher level of detail (e.g. categories) as achievable by 
DNA-based EVC prediction. However, even when such data are avail
able, the use of forensic ancestry DNA testing to identify the geographic 
region for which EVC trait prevalence data are to be allocated for use as 
priors in EVC prediction will only be applicable, in case the prevalence 
values for different populations within such DNA-identified region do 
not show much variation, and if the regional geographic ancestry can be 
inferred with high confidence from the crime scene DNA sample. While 
collection of prevalence data may be achievable in the future, provided 
such studies are carried out with suitable geographic coverage and EVC 
phenotypic details, and given that regional such as continental ancestry 
inference based on enough DNA markers already is possible [44], the 
trait variation within DNA-identifiable geographic regions remains as 
problem. For instance, within Europe, which as continental region is 
identifiable with forensic DNA ancestry testing [44], eye and hair color 
prevalence values largely vary between populations from different parts 
of Europe. Thus, averaging such population prevalence values, if 
available, will not result in suitable priors for any person originating 
from any European population. This could only be solved by increasing 
the level of detail of DNA-based ancestry testing to the sub-regional or 
even population level, which currently, however, is not achievable and 
also is not expected to be achievable in the near future. Identifying ge
netic geographic population substructure within continents, such as 
within Europe [45], requires thousands of autosomal SNPs – a number 
that currently cannot be achieved given available technologies that are 
suitable for forensic DNA analysis. The simultaneous and targeted 
analysis of many thousands of SNPs in low-quantity and low-quality 
DNA typically available from crime scene stains requires the develop
ment of new DNA technology in the future. 

In summary, our results provide a first assessment of the impact of 
trait prevalence-informed priors on the prediction model perfor
mance for several EVCs. Incorporation of priors, possibly informed 
by trait class prevalence values in biogeographic ancestry groups, 
can improve the performance of predicting appearance traits, but a 
correct specification of those priors appears mandatory to protect 
against a deteriorated performance. Future work is needed to obtain 
unbiased estimates of trait prevalence for EVCs to be predicted in a 
large variety of populations, when mostly non-causal genetic 

Table 6 
Shift in AUC in EVC prediction modeling from genetic data for the prior-based 
models compared to the prior-free models.  

Trait Category Below [%] Above [%] 

Eye color Blue 50.5 49.5  
Intermediate 50.5 49.5  
Brown 43.8 56.2 

Hair color Blond 43.9 56.1  
Brown 70.9 29.1  
Red 49.2 50.8  
Black 84.9 15.1 

Skin color (4/5) Very Pale 90.1 9.90  
Pale 49.2 50.8  
Intermediate 46.2 53.8  
Dark/Dark to Black 53.4 46.6 

Skin color (1/2) Very Pale/Pale 96.4 3.64  
Intermediate 50.8 49.2  
Dark 50.8 49.2  
Dark to Black 50.8 49.2 

Hair structure Straight 1.32 98.7  
Wavy 11.6 88.4  
Curly 27.8 72.3 

Freckles Freckled/Non-freckled 0.0 100.0 

Proportion of prior tupels resulting in area-under-curve (AUC) values below and 
above the value for the prior-free approach, respectively. 
Skin color (4/5) is referring to the skin color prediction when the two darkest 
categories of dark and dark to black were merged and considered as one single 
category. Similarly Skin color (1/2) is referring to the case when the two palest 
categories of very pale and pale were merged and considered as one. 
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markers are continued to being used for trait prediction. This need 
will be reinforced by future GWAS whose larger sample sizes will 
allow the detection of genetic markers with even smaller effect sizes, 
yet most of them likely being non-causal. Finally, appearance trait 
research has to overcome the assembly of ever more associated, yet 
non-causal genetic markers and, via experimental evidence, has to 
arrive at the identification of the actual causal genetic factors for 
EVCs. If successful, this will allow to achieve accurate EVC prediction 
in a population-independent way, eventually rendering the use of 
trait prevalence priors obsolete in the future. 
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Universität zu Köln (Germany): Michael Nothnagel, Maria- 
Alexandra Katsara, Tarek Khellaf. 
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Fig. 6. Impact of the choice of trait prevalence priors on the overall ac
curacy in EVC prediction modeling from genetic data. Results are presented 
for a Bayesian approach using a multinomial logistic regression model for 
predicting four pigmentation trait categories, namely those of eye color (EC; 
first line), hair color (HC; second line) and skin color (SC; third line: darkest 
categories merged; fourth line: palest categories merged), where the vertical 
line corresponds to a prior-free prediction. 

Table 7 
Shift in overall accuracy in EVC prediction modeling from genetic data for the 
prior-based models compared to the prior-free models.  

Trait Below [%] Above [%] 

Eye color 75.24 24.75 
Hair color 90.97 9.027 
Skin color (4/5) 72.96 27.03 
Skin color (1/2) 80.92 19.07 
Hair structure 100.0 0.0 
Freckles 87.87 12.12 

Proportion of prior tupels resulting in overall accuracy values below and above 
the value for the prior-free approach, respectively. 
Skin color (4/5) is referring to the skin color prediction when the two darkest 
categories of dark and dark to black were merged and considered as one single 
category. Similarly Skin color (1/2) is referring to the case when the two palest 
categories of very pale and pale were merged and considered as one. 
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