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The VISAGE (VISible Attributes through GEnomics) consortium aims to develop, optimize and validate prototype
tools to broaden the use of DNA intelligence methods in forensic routine laboratories. This includes age esti-
mation based on the quantification of DNA methylation at specific CpG sites. Here, we present the VISAGE basic
prototype tool for age estimation targeting 32 CpGs from five genes ELOVL2, MIR29B2CHG (herein, MIR29B2C),
FHL2, TRIM59 and KLF14. The assay interrogates these well described age markers by multiplex PCR for bisulfite

converted DNA and massively parallel sequencing on a MiSeq FGx instrument. We describe protocol optimi-
zations including tests on five bisulfite conversion kits and an evaluation of the assay’s reproducibility and
sensitivity with artificially methylated DNA standards. We observed robust quantification of methylation levels
with a mean standard deviation of 1.4 % across ratios. Sensitivity tests showed no increase of variability down to
20 ng DNA input into bisulfite conversion with a median difference below 1.6 % between technical replicates.

1. Introduction

Age estimation from biological material can provide essential leads
in forensic investigations to find unknown perpetrators of crime typi-
cally not identifiable with standard STR-profiling. The investigative
value of an unknown person’s age is twofold 1) providing intelligence
information by itself and 2) making DNA prediction of age-dependent
appearance traits (e.g. hair colour, hair loss) more reliable [1]. The
analysis of genome-wide DNA methylation profiles from microarray
data had revealed that DNA methylation patterns at specific CpG sites
are correlated with age [2]. The degree of methylation at such CpGs
changes over a person’s lifespan and can be used to build age estimation
models often referred to as “epigenetic clocks” [3]. Most of the cur-
rently available forensic assays are based on technologies such as pyr-
osequencing (e.g [4].), SNaPshot (e.g [5].), the EpiTyper System (e.g
[6].) and more recently also massively parallel sequencing (MPS; e.g
[71.). All of these methods require a prior bisulfite conversion (BC)
allowing the distinction of methylated versus unmethylated cytosines
(represented as thymines after conversion and PCR). However, the

harsh chemical treatment during BC leads to DNA degradation [8] and
DNA loss in the course of necessary purification steps. This provides
challenges arising from the low quantity and quality of DNA obtained
from crime scene material. Additionally, most assays were based on
singleplex PCR (e.g [9-13].) due to multiplex limitations of used
technologies and the challenging primer design for bisulfite converted
DNA [14]. The lower complexity of the DNA sequence after conversion
leads to an increased occurrence of non-specific primer binding and
facilitates dimer formations due to the T and A richness of the sense and
antisense strands [15,16]. This results in design constraints that are
mostly manageable for singleplex reactions but impede the develop-
ment of multiplex PCR assays. A possible solution is the restriction of
the number of markers to make age estimation through DNA methy-
lation quantification more feasible for forensic applications. Whereas
tissue-independent age models use a high number of markers (e.g. 353
markers in [17], 71 markers in [18] or 94 markers in [19]), forensic age
estimation models have focused on fewer markers (< 20, e.g.
[7,9,10,20,21].) that are highly informative in forensically relevant
biological material [22]. However, the simultaneous analysis of
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Table 1

Manufacturer's informations on bisulfite conversion kits.
Short designation  Kit name Company
MethylEdge MethylEdge Bisulfite Conversion System Promega
Methylamp Methylamp DNA Modification Epigentek
EpiJET EpiJET Bisulfite Conversion Kit Thermo Fisher Scientific
EZ Direct EZ DNA Methylation-Direct Kit Zymo Research
Premium Premium Bisulfite kit Diagenode

DNA input range Optimum DNA input [ng] Conversion time Desulfonation time

100 pg -2 ug 200 - 500 1.) 98°C 8 min 15 min
2.) 54°C 60 min
> 50 pg 50 - 200 1.) 37°C 10 min 8 min
2.) 65°C 90 min
50 pg -2 ug 200 - 500 1.) 98°C 10 min 20 min
2.) 60°C 150 min
> 50 pg 200 - 500 1.) 98°C 8 min 15 - 20 min
2.)64°C 3.5h
100 pg -2 ug 200 - 500 1.) 98°C 8 min 15 - 20 min

2.) 54°C 60 min

markers in multiplex format is of fundamental importance for the
prevention of sample depletion and the implementation of this tech-
nology in forensic practice, as shown previously for SNaPshot [23] and
MPS [24].

The VISible Attributes through GEnomics (VISAGE) Consortium
aims to develop, optimize and, in following studies, forensically vali-
date prototype tools based on MPS to predict externally visible char-
acteristics from the DNA of unknown sample donors. This includes the
development of targeted MPS-based tools for genotyping of SNPs to
predict appearance and ancestry as well as MPS-based tools for targeted
bisulfite sequencing of CpGs for estimating age. Here, we present the
development and technical evaluation of the VISAGE basic prototype
tool for age estimation (herein BTA). BTA targets 32 age informative
CpG sites at five genes, ELOVL2, MIR29B2C (formerly Clorf132), FHL2,
TRIM59 and KLF14, that were described as strong age predictors for
blood samples by Zbieé¢-Piekarska et al. (2015) [10]. An age prediction
model has been developed based on singleplex PCR assays and pyr-
osequencing. The authors reported a mean absolute deviation (MAD) of
3.9 years in the testing set [10]. The same set of markers was validated
in singleplex pyrosequencing assays in a Korean sample set by Cho et al.
(2017) who also included ELOVL2 C_1 and C_2 (Table 2) in their study.
They calculated a MAD of 3.3 years after changing CpG positions to
those that explain the highest percentage of age-related variance in
each marker [13]. Reinforcing the predictive strength of this marker
composition, Jung et al. (2019) [23] developed a multiplex SNaPshot
assay with a MAD of 3.5 years.

For the BTA, we successfully designed a multiplex PCR for bisulfite
converted DNA followed by targeted MPS with the MiSeq FGx. Here, we
focus on a detailed description of assay development including the
testing of five BC kits and two PCR multiplex kits for protocol optimi-
zation. The assay’s reproducibility and sensitivity was evaluated using
DNA standards of known methylation state, which showed a robust
quantification of methylation levels down to 20 ng DNA input.

2. Materials and methods
2.1. Ethics statement

This study was approved by the ethics commission of the Medical
University of Innsbruck (study number 1086,/2017) and all volunteers
provided written informed consent.

2.2. Experimental design, DNA samples and standards of known
methylation state

Assay development was carried out with DNA extracts from blood to
ensure that the BTA is optimized for this respective sample type. For
final performance assessment, artificially methylated DNA standards
were sequenced to control for correct DNA methylation quantification.
DNA was extracted from 10 mL whole blood of three sample donors
using the QIAamp DNA Blood Maxi Kit (Qiagen, Hilden, Germany) and
quantified by real-time quantitative PCR [25]. These DNA extracts were

used in primer optimization, BC kit testing and multiplex PCR optimi-
zation. For the assay’s performance assessment, the human WGA me-
thylated & non-methylated DNA Set (Zymo Research, Irvine, California,
USA) was diluted with 100 pL low TE (10 mM Tris, 0.1 mM EDTA, pH 8)
and quantified with the Qubit dsDNA HS Assay Kit (Thermo Fisher
Scientific - TFS, Waltham, MA, USA). Subsequently, these dilutions
were adjusted to 20 ng/pL. Fully methylated and non-methylated DNA
samples were mixed at different volume proportions to achieve 100 %,
95 %, 90 %, 75 %, 50 %, 25 %, 10 %, 5 % and 0 % methylated DNA
standards. All nine methylation ratios were processed in duplicates
following the BTA protocol to test reproducibility. This reproducibility
study (18 DNA standards) was performed twice, using the Premium
Bisulfite kit (Diagenode, Ougrée, Belgium) for run 1 and the EZ DNA
Methylation-Direct kit (Zymo Research) for run 2. For sensitivity eva-
luation, dilution series (200 ng, 100 ng, 50 ng, 20 ng, 10ng and 1 ng)
from five differentially methylated DNA standards (100 %, 75 %, 50 %,
25 % and 0 %) were bisulfite converted in duplicates with the Premium
Bisulfite kit. Samples sequenced on the same MiSeq FGx flow cell
(Verogen, San Diego, USA) were processed together with one negative
control (PCR grade water).

2.3. Bisulfite conversion kit and DNA polymerase testing

Aiming to better understand the effects and performance of bisulfite
conversion, five kits from different commercial suppliers (Table 1) were
selected based on their presumed amenability for low DNA inputs, as
indicated by the manufacturer. Comparative testing was performed
following the respective protocols with 200 ng DNA (optimum), 10 ng,
1ng and 500 pg DNA input. Converted DNA was eluted with 10 L
elution buffer provided by the kits. BC of the five different DNA inputs
was carried out in duplicates and eluates were immediately used for
amplification. From each BC, 4 uL of converted DNA were used for two
singleplex PCRs (308 bp long amplicon of ELOVL2 gene) to test the
performance of the Multiplex PCR Kit (Qiagen) and the ZymoTaq
PreMix (Zymo Research). PCRs were performed in 50 pL total volume
under the following conditions [25]: initial denaturation at 95 °C for
10 min; 40 cycles of 94 °C for 30s, 56 °C for 30s, 72 °C for 30s; final
elongation at 72 °C for 10 min. Primer sequences and assay concentra-
tions are listed in Table S1. PCR product yield was quantified fluor-
ometrically using the Qubit dsDNA HS Assay Kit (TFS). The Bioanalyzer
High Sensitivity DNA Kit (Agilent Technologies, Santa Clara, California,
USA) was used to control for correct amplicon size and unspecific PCR
products (Fig. S1).

2.4. Multiplex PCR

Multiplex PCR primer sequences [9,10] and concentrations are
listed in Table 2. Primer positions and amplicon sequences were ver-
ified in GRCh38 using Ensemble [26] (www.ensembl.org). The forward
primer of KLF14designed by Zbieé-Piekarska [10] showed a sequence
difference in a C-stretch between GRCh37 and GRCh38. The primer
sequence was changed to the bisulfite converted sequence of the newer
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Table 2
Genomic locations of target CpGs, multiplex PCR primer sequences and primer concentrations in the final assay.
Gene Primer sequence (5-3") Strand Ref. Concentration [UM] Amplicon size CpG No. GRCh38
[bp]
ELOVL2 fwd:AGGGGAGTAGGGTAAGTGAG rev: sense [4] 0.2 267 C1 Chr6:11044628
AAACCCAACTATAAACAAAACCAA Cc2 Chr6:11044631
C_3° Chr6:11044634
Cc4 Chr6:11044640
C5 Chr6:11044642
Co6 Chr6:11044644
c7 Chr6:11044647
Cs8 Chr6:11044655
Cc9 Chr6:11044661
MIR29B2C fwd: GTAAATATATAAGTGGGGGAAGAAGGG rev: sense [25] 0.4 146 C1 Chr1:207823672
TTAATAAAACCAAATTCTAAAACATTC c2 Chr1:207823675
Cc.3* Chr1:207823681
FHL2 fwd: TGTTTTTAGGGTTTTGGGAGTATAG rev: sense [25] 0.2 167 C1 Chr2:105399282
ACACCTCCTAAAACTTCTCCAATCTCC c2* Chr2:105399288
C3 Chr2:105399291
C4 Chr2:105399297
C5 Chr2:105399300
Cc6 Chr2:105399310
Cc7 Chr2:105399314
Cc8 Chr2:105399316
TRIMS59 fwd: TATAGGTGGTTTGGGGGAGAG rev: sense [25] 0.2 141 C1 Chr3:160450172
AAAAAACACTACCCTCCACAACATAAC Cc2 Chr3:160450174
C3 Chr3:160450179
C4 Chr3:160450184
C5 Chr3:160450189
C6 Chr3:160450192
c7® Chr3:160450199
Ccs8 Chr3:160450202
KLF14 fwd: GGTTTTAGGTTAAGTTATGTTTAATAGT rev: sense [251° 0.4 128 c1® Chr7:130734355
ACTACTACAACCCAAAAATTCC C2 Chr7:130734357
C3 Chr7:130734372
C4 Chr7:130734375

# Included in final age model of Zbie¢-Piekarska et al. (2015) [25].
> fwd primer modified to match GRCh38.

assembly from “GGTTTTTAGGTTAAGTTATGTTTAATAGT” to “GGTT
TTAGGTTAAGTTATGTTTAATAGT’”. Notably, both versions showed a
similar performance in terms of PCR product yield (data not shown).
Additionally, primer sequences were tested in silico for the formation of
alternative PCR products using Bisearch [16] (default parameters), the
formation of primer dimers (AutoDimer [27]) and primer helicity using
an in-house developed R script.

For initial annealing temperature optimization, all primers were
tested in singleplex gradient PCR using 2 uL eluate from bisulfite con-
version of 200 ng DNA with the Premium Bisulfite kit. The multiplex
reaction was optimized again by testing annealing temperatures of
55°C, 57.6°C and 60° in a gradient PCR and by comparing different
denaturation (15s vs. 30s), annealing (30s vs. 60s) and elongation
times (30s vs. 60s). Final PCR assays were performed in 25 pL total
volume using the Multiplex PCR Kit and the following thermocycler
protocol: Initial denaturation at 95 °C for 15 min; 40 cycles of 95 °C for
10s, 58 °C for 30's, 72 °C for 30 s; final elongation at 72 °C for 10 min. In
reproducibility and sensitivity studies, 8 uL of the bisulfite converted
DNA preparations were used for PCR amplification. PCR products were
purified with 1.5X volumes of AMPure XP beads (Beckman Coulter,
Brea, California, USA) and quantified using the Qubit dsDNA HS Assay
Kit.

2.5. Verification of PCR products

Purified PCR products were analysed using the DNA 1000 or the
High Sensitivity DNA Kit (Agilent Technologies) to assess amplicon size
and product yield. To verify correct amplification, PCR products from
assay optimization and from the final multiplex were typed with Sanger
sequencing [28]. Reactions were set up using BigDye Terminator v1.1
Cycle Sequencing Kit (TFS) in 10puL reaction volumes and 0.3 pM

primer (Table 2) with the following cycling protocol: 96 °C for 1 min; 25
cycles of 95 °C for 15, 50 °C for 5s and 60 °C for 4 min. Purification of
products was carried out by centrifugation over Sephadex G-100 col-
umns (Amersham, Little Chalfont, UK). Capillary electrophoretic se-
paration was performed on an ABI3500 (TFS) using standard settings.
Sequences were analysed with the Sequencer 5.1 (Gene Codes Cor-
poration, Ann Arbor, MI, USA) software.

2.6. Massively parallel sequencing

Libraries were prepared from 50 ng purified PCR products using the
KAPA Hyper Prep Kit with KAPA Library Amplification Primer Mix and
KAPA SI Adapter Kit Set A + B at 15 pM (all Roche, Basel, Switzerland).
Post-ligation and post-amplification clean-ups were performed with
0.8X or 1X AMPure XP beads and eluted in 23 pL or 20 pL low TE, re-
spectively. Libraries were amplified following the manufacturer’s pro-
tocol using 8 cycles and quantified with the KAPA Library
Quantification Complete Kit (Roche) in halved volume. After diluting
libraries to 4 nM, samples of reproducibility (N = 19 per flow cell) and
sensitivity (N = 21 per flow cell) studies were pooled equimolarly and
prepared for sequencing following the MiSeq System Denature and
Dilute Libraries Guide, Protocol A. Libraries were diluted to 7 pM and
spiked with 2L 20 pM PhiX control v3 (Illumina, San Diego, USA).
Sequencing was performed on a MiSeq FGx with MiSeq Reagent Kit v2
and 2 X 151 cycles (Verogen).

2.7. MPS data analysis

Fastq files produced by the MiSeq FGx were aligned against a
custom reference genome (Table S2) containing only targeted amplicon
sequences (+/- 300 bp; GRCh38) using an adapted Burrows-Wheeler
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alignment for bisulfite converted DNA sequences — bwa-meth [29].
Samtools [30] was used for BAM file creation, sorting, filtering and
indexing. All samples were controlled visually using the Integrative
Genomics Viewer (IGV) [31]. To calculate read depth and beta values,
total reads for each position of aligned amplicons were extracted using
IGV tools using a minimum mapping quality of 30. Beta values were
calculated by dividing C reads by the sum of C and T reads. Bisulfite
conversion efficiency was taken from all non CpG-Cs per sample and
calculated as reversed beta values (T reads divided by the sum of C
reads and T reads). Total coverage represents the sum of the number of
reads per amplicon and was calculated from one target CpG site per
marker (highlighted in Table 2). Normalized read depth was calculated
by dividing the read depth at target CpG sites by the total coverage.
Statistical analysis was performed with Microsoft Excel and R (https://
www.r-project.org/) [32].

3. Results and discussion
3.1. Assay optimization and bisulfite conversion kit testing

Bisulfite conversion is the current method of choice to modify DNA
for quantitative methylation analysis. However, it is also known to lead
to DNA degradation and loss [8] and therefore, represents a potential
bottleneck in DNA methylation analysis. We tested five commercially
available BC kits (Table 1) to choose a kit for the BTA protocol. Bisulfite
conversion of 200ng, 10ng, 1ng and 500 pg human DNA was per-
formed with each kit and quantified after singleplex PCR (Fig. 1A).
Qubit quantification results were used to assess BC kits assuming that
high DNA loss and severe DNA degradation during the bisulfite con-
version workflow would lead to lower PCR product yield of the 308 bp
target sequence of ELOVL2. At optimum DNA input (200 ng) all kits
showed successful amplification results (Fig. S1). All BC kits tested
produced adequate quantification results with 10 ng DNA input, which
showed a mean product concentration of 23.0ng/ul. When lowering
the DNA input to 1 ng, all kits but one (Methylamp) achieved a product
concentration of more than 1 ng/ul. Highest concentrations at 500 pg
DNA input were determined for the EZ Direct (mean =4.16 ng/ul) and
the Premium (mean =3.02ng/ul) kit, which were chosen for further
testing with the BTA. BC kits have already been evaluated in several
studies with regard to DNA yield, fragmentation, specificity and con-
version efficiency [33-36]. However, low DNA inputs were only con-
sidered by Tierling et al. (2018) [37], which did not include the BC kits
picked for BTA optimization. Here, we explored the performance with
low DNA inputs to select two kits for further analysis of bisulfite con-
version efficiency by targeted MPS.

For optimization of the PCR assay, we evaluated the performance of
two PCR kits: the Qiagen Multiplex PCR kit designed for multiplex PCR
and the ZymoTaq PreMix optimized for amplification of difficult tem-
plates, such as bisulfite converted DNA (ZymoTaq PreMix, Protocol
Version 1.0.1). Qubit quantification results after PCR are shown in
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Fig. 2. Bisulfite conversion efficiency was estimated based on the percentage of
T reads at non-CpG-C sites. Boxplots show the T reads percentage obtained for
non-CpG-Cs of MiSeq FGx Run 1 (Samples: N = 18, non-CpG-Cs per sample:
N = 139) using the Premium kit and MiSeq FGx Run 2 (Samples: N = 18, non-
CpG-Cs per sample: N = 139) using the EZ Direct Kkit.

Fig. 1B. The Qiagen Multiplex kit achieved significantly (Kruskal-Wallis
Test: Bonferroni adjusted p-value < 0.0167) higher PCR product yields
at 10 ng, 1 ng and 500 pg DNA input compared to the ZymoTaq PreMix
and therefore, was used in the final PCR assay.

3.2. Bisulfite conversion efficiency

Conversion efficiency of the EZ Direct and the Premium kits was
tested in the framework of the reproducibility study (Fig. 2). The
overall mean conversion efficiency of the 18 processed differentially
methylated DNA standards was high for both kits with more than 99.6
% and 99.4 % conversion for the Premium and the EZ Direct kit, re-
spectively. Bisulfite conversion efficiency of both kits was indicated
as > 99.5 % by the manufacturers. Our results appeared less variable
within the Premium kit with a minimum mean conversion efficiency of
99.6 % for a single sample whereas the lowest mean conversion effi-
ciency was 98.9 % for the EZ Direct kit. Furthermore, the EZ Direct kit
exhibited more outliers with the percentage of T reads in single non
CpG-Cs dropping to 89.9 %. Overall, the Premium kit showed more
stable conversion rates in combination with a shorter conversion time
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Fig. 1. (A) Quantification results for PCR products obtained by using the Qiagen Multiplex Kit after bisulfite conversion of 10 ng, 1 ng and 500 pg DNA with five
different bisulfite conversion kits. All reactions were performed in duplicates and quantified using the Qubit fluorometer. (B) Quantification results for PCR products
obtained by using the Qiagen Multiplex Kit (QIA_MPX) or the ZymoTaq Premix for amplification after bisulfite conversion of the five different kits (N = 10).
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Fig. 3. Boxplots showing (A) read depth and (B) normalized read depth for all replicates (N = 32) of both MiSeq FGx runs at the five selected target CpG sites.

(1 h vs 3.5h, Table 1) and was therefore chosen for sensitivity assess-
ment.

3.3. Reproducibility

To test the assay’s reproducibility, 200 ng DNA from nine different
methylation standards were processed in duplicates with two distinct
BC kits on separate MiSeq FGx runs. Both runs yielded high total se-
quence coverage with a mean of 388,600.9 reads (194,300.4 pairs) per
sample for run 1 and 561,369.6 reads (280,684.8 pairs) for run 2. All
target positions were covered by more than 5000 reads, exceeding the
threshold of 1000 reads (Fig. 3A) that was set following suggestions by
Masser et al. (2013) [38] for accurate methylation quantification.
Evaluation of the distribution of reads between the five amplicons was
performed by normalization of the read depth at one target CpG per
marker by the total number of reads (Fig. 3B). KLF14 yielded higher
read depth, which was most likely a result of higher product yields
during amplification, as suggested by Bioanalyzer results. At targeted
CpG positions, A and G reads were considered as misincorporated bases.
To assess variation of methylation levels due to erroneous base calls,
the sum of A-reads and G-reads was divided by the total number of
reads at the specific target site. Base misincorporation was estimated
below 1.5 % (mean = 0.26 %) for all 18 replicates of both runs (Fig.
S2), showing that erroneous base calling is expected to introduce only
low variation and should not influence final methylation quantification.

The accuracy of age estimation strongly depends on the robust
quantification of methylation levels at the targeted CpG positions.
Quantification of methylation levels in the two reproducibility runs
using different BC kits showed no statistically significant difference
(linear regression analysis, Fig. S3); they were, therefore, treated as four
replicates in downstream analysis. Plotting observed versus the ex-
pected methylation levels at the target CpG sites yielded only little
deviation from a linear increase of methylation for KLF14 and TRIM59
(Fig. 4). A slightly stronger bias was observed for FHL2 and ELOVL2,
while MIR29B2CHG was found to overestimate all expected methyla-
tion ratios. Measured methylation levels showed a mean standard de-
viation of 1.4 within ratios, observing 4.3 as the highest standard de-
viation for the 10 % methylated DNA standard at MIR29B2CHG_C3. The
difference to the expected methylation level is most likely a result from
amplification bias that has been frequently reported for bisulfite con-
verted DNA [39-41]. Moreover, fully methylated DNA standards are
not 100 % methylated but defined by the manufacturer as very highly
methylated DNA (methylation rates > 95 %), which was corroborated
in our study (mean observed methylation of 96.0 % * 1.9 for nominally

fully methylated standards). Furthermore, we found that methylation
values within the same amplicon and sample varied on average from
1.4 % for MIR29B2CHG with only three target CpG sites up to 3.2 % for
TRIMS59 with eight target CpG sites.

3.4. Sensitivity

The optimum DNA input for most of the commercially available BC
kits was indicated between 200 and 500 ng DNA by the manufacturers,
which is a considerably high amount in the forensic genetic context.
Although lower DNA inputs can be used, the tested BC kits showed a
strong decrease in amplicon yield from 10 ng to 1 ng human DNA input
in the previously described optimization tests (Fig.1). Thus, for the
sensitivity study, we analysed a dilution series of five DNA methylation
standards (Zymo) from 200 ng to 1 ng. To increase sensitivity, BTA was
designed as a multiplex reaction, for which the whole BC eluate can be
used in the PCR assay. Target coverage was exceeding the 1000 reads
threshold for all DNA inputs and all five markers except for one of the
1 ng replicates at ELOVL2 target positions (Fig. S4). This indicates that
the assay is technically capable of processing low DNA input samples.
However, read depth alone is not sufficient to set meaningful low input
limits for accurate methylation quantification. To establish such a low
limit for initial DNA amount, we considered the increase of absolute
differences in measured methylation levels between technical replicates
(Fig. 5). We observed constant variation in methylation quantification
across dilution steps down to 20 ng DNA input with the highest median
difference between duplicates at 50 ng with 1.6 %. When excluding the
10ng (median = 2.8 %) and 1ng (median = 9.0 %) samples, the
quantified methylation levels were consistent with the results obtained
in the reproducibility study (Fig. 4B) showing an average standard
deviation of 2.2 % across markers and ratios. Taking into account that
the DNA input at PCR level was much lower (approximately 26 % [33]
to 45 % [34] DNA loss from optimal input was reported for the Pre-
mium kit), the increased variation for 10 ng and 1 ng samples may be
explained by stochastic effects. As any quantitative method, DNA me-
thylation analysis is inherently linked to sample representativeness.
Therefore, erroneous methylation quantification can be a result of
analysing only a small number of DNA molecules that do not reflect the
methylation level of the original sample or tissue. Stochasticity in DNA
methylation quantification was addressed recently in an in silico study
by Naue et al. (2018) [42] who calculated that 5ng of DNA (1392
template molecules) are needed to resolve a 10 % difference in DNA
methylation. However, this assumption does not take into account DNA
loss during laboratory workflows and technical variation. The
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Fig. 4. (A) Methylation levels quantified at one target CpG site per marker of the nine DNA methylation standards (N = 4) used to assess reproducibility. (B)
Methylation levels quantified within the sensitivity study at one target CpG site per marker of five methylation ratios from 200 ng to 20 ng DNA input (N = 8). Error
bars represent the standard deviation. Dashed lines depict the line of identity (intercept = 0, slope = 1).
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Fig. 5. Boxplots showing the absolute difference in methylation quantification
between duplicates. Difference was calculated for one target CpG site per
marker and for all five DNA methylated standards (0 %, 25 %, 50 %, 75 % and
100 %; N = 20).

empirically determined methylation values suggested that at least twice
of this DNA amount would be needed for reliably telling apart a 10 %
difference in methylation levels. Down to 20 ng DNA, none of the du-
plicates had a difference exceeding 10 % at target CpG sites, while at
10ng, four target CpGs (ELOVL2_C3 at 25 %, FHL2 C2 at 50 %,
MIR29B2C C3 at 50 % and 25 % methylation rate) showed a greater
discrepancy between duplicates (Fig. S5). When examining outliers in
IGV, no noticeable differences were observed compared to samples
within the expected range.

4. Conclusions

Here, we present the VISAGE basic tool for age estimation from DNA
of blood sources based on a bisulfite PCR multiplex simultaneously
targeting 32 age-informative CpGs from five genes (ELOVL2,
MIR29B2C, FHL2, TRIM59 and KLF14) followed by targeted MPS. Each
step of the protocol was optimized in consideration of forensic re-
quirements including a performance test of five BC and two PCR Kits.
Our results indicated that BC kits are performing differently in terms of
DNA recovery of low DNA input samples. However, this performance
test was only intended for optimizing the VISAGE protocol as, to the
best of our knowledge, a comprehensive sensitivity study of BC kits is
missing as of yet. DNA methylation standards were found to be suitable
to assess the amplification bias introduced by the method and the re-
producibility of DNA methylation quantification. The assay showed
robust quantification of DNA methylation levels down to 20 ng DNA
input into BC and elevated variability for 10ng samples whereas
measured methylation levels from 1 ng DNA where far from expected
values.

This study describes the combination of established DNA methyla-
tion markers known to correlate with chronological age into a new
multiplex PCR/MPS-based DNA methylation quantification assay and
its overall performance with control DNA samples. Further com-
plementing studies including the performance of this tool in other la-
boratories are underway. The development and validation of a statis-
tical model for age prediction based on the CpG markers and the
technology used in the BTA are currently being addressed by the
VISAGE Consortium. This includes the generation of data produced
with VISAGE prototype tools for age estimation as the method-to-
method bias in DNA methylation analysis precludes the use of pre-
viously established age-prediction models for this marker set.
Moreover, tool developments to include markers for age estimation
from DNA of non-blood sources are also ongoing. Such studies will
allow the implementation of this VISAGE tool in forensic routine la-
boratories.
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