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A B S T R A C T   

Age prediction from DNA has been a topic of interest in recent years due to the promising results obtained when 
using epigenetic markers. Since DNA methylation gradually changes across the individual’s lifetime, prediction 
models have been developed accordingly for age estimation. The tissue-dependence for this biomarker usually 
necessitates the development of tissue-specific age prediction models, in this way, multiple models for age 
inference have been constructed for the most commonly encountered forensic tissues (blood, oral mucosa, 
semen). The analysis of skeletal remains has also been attempted and prediction models for bone have now been 
reported. Recently, the VISAGE Enhanced Tool was developed for the simultaneous DNA methylation analysis of 
8 age-correlated loci using targeted high-throughput sequencing. It has been shown that this method is 
compatible with epigenetic age estimation models for blood, buccal cells, and bone. Since when dealing with 
decomposed cadavers or postmortem samples, cartilage samples are also an important biological source, an age 
prediction model for cartilage has been generated in the present study based on methylation data collected using 
the VISAGE Enhanced Tool. In this way, we have developed a forensic cartilage age prediction model using a 
training set composed of 109 samples (19–74 age range) based on DNA methylation levels from three CpGs in 
FHL2, TRIM59 and KLF14, using multivariate quantile regression which provides a mean absolute error (MAE) of 
± 4.41 years. An independent testing set composed of 72 samples (19–75 age range) was also analyzed and 
provided an MAE of ± 4.26 years. In addition, we demonstrate that the 8 VISAGE markers, comprising EDAR-
ADD, TRIM59, ELOVL2, MIR29B2CHG, PDE4C, ASPA, FHL2 and KLF14, can be used as tissue prediction markers 
which provide reliable blood, buccal cells, bone, and cartilage differentiation using a developed multinomial 
logistic regression model. A training set composed of 392 samples (n = 87 blood, n = 86 buccal cells, n = 110 
bone and n = 109 cartilage) was used for building the model (correct classifications: 98.72%, sensitivity: 0.988, 
specificity: 0.996) and validation was performed using a testing set composed of 192 samples (n = 38 blood, n =
36 buccal cells, n = 46 bone and n = 72 cartilage) showing similar predictive success to the training set (correct 
classifications: 97.4%, sensitivity: 0.968, specificity: 0.991). By developing both a new cartilage age model and a 
tissue differentiation model, our study significantly expands the use of the VISAGE Enhanced Tool while 
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increasing the amount of DNA methylation-based information obtained from a single sample and a single forensic 
laboratory analysis. Both models have been placed in the open-access Snipper forensic classification website.   

1. Introduction 

The identification of cadavers and human remains recovered from 
mass disaster events [1,2], exhumation [3–5], or missing persons iden-
tification [6] are among the many tasks performed by forensic geneti-
cists. New technologies using biometric data, including machine 
learning methods, increasingly provide support for conventional human 
identification methods [7], but still the FBI and Interpol annually 
disclose their databases of unidentified remains [8,9]. According to the 
FBI’s National Crime Information Center report for 2022, this database 
listed 546,568 missing person records. The 2022 records included 581 
(64%) unidentified human cadavers, 5 (1%) unidentified mass disaster 
victims, and 316 (35%) living persons who could not ascertain their 
identity [8]. 

Costal cartilage tissue has been successfully used in cases of indi-
vidual identification of corpses at an advanced stage of decomposition or 
with almost complete skeletonization and can be an alternative to soft 
tissue that has degraded DNA [10–12]. In fact, costal cartilage is one of 
the last tissues available for sampling before complete skeletonization 
occurs in human remains [13]. It is worth noting that cartilage tissue is a 
practical alternative forensic material to bone and teeth due to a much 
faster and cheaper DNA extraction procedure [10,14,15]. The advan-
tages of using costal cartilage in the process of human identification has 
been shown in some cases because it may bypass the problem of 
chimerism [16,17]. In addition, cartilage tissue is increasingly chosen 
for other forensic analyses including forensic toxicology [18–21]. 

The hyaline tissue of the costal cartilage is the thickest cartilage in 
the human body. It connects the ribs to the sternum [22] has an abun-
dant extracellular matrix that protects its DNA from environmental 
factors, and, amongst other material, consists of proteoglycans, and 
collagen I and II. As age increases, the quantity of type I collagen 
gradually decreases compared to type II collagen [23]. Pfeiffer et al. [24] 
demonstrated that the D/L aspartic acid ratios in the insoluble collagen 
fraction correlate with age (r = 0.97) and noted the 95% confidence 
interval around an estimated individual age was approximately 14 
years. Other studies have shown that the extent of costal cartilage 
calcification (the measurement of calcification foci) might correlate 
with age [25,26]. Since the layer of hyaline tissue on long bone articular 
surfaces is much thinner, and thus more susceptible to degradation [27], 
the correlation between DNA methylation age and chronological age 
was found to be weaker (r = 0.79) and a median absolute difference of 
four years was estimated [28]. Age estimation can help identify decay-
ing human remains by limiting the search criteria for a missing person 
but the forensic utility of a predictive method depends primarily on its 
accuracy [29]. It was found that epigenetic changes are essential in the 
aging process, and consequently DNA methylation (mDNA) has proven 
to be a very accurate measure of an individual’s age. However, tissue 
specificity of DNA methylation patterns complicates the development of 
a universal epigenetic age predictor in forensics. The epigenetic age 
prediction has been explored more extensively for body fluids including 
blood and saliva which are often examined in criminal cases [30–32]. 
Recently, the VISAGE Consortium introduced the VISAGE Enhanced 
Tool for age prediction from somatic tissues based on eight most rele-
vant methylation markers, covering 44 individual CpG sites. An assay 
based on target massively parallel sequencing (MPS) technology using 
the MiSeq system (Illumina, San Diego, CA, USA) was developed for 
simultaneous analysis of these markers enabling the collection of 
methylation data to predict age using specific algorithms for blood, 
buccal cells, as well as bone [32]. Age prediction models for blood, 
buccal cells and bone based on tissue-specific model training and testing 
datasets have been established providing prediction accuracies with 

mean absolute error of ± 3.2 to ± 3.7 years for the tissue-specific 
models. 

A method of age prediction based on costal cartilage can be poten-
tially useful in cases of identification of cadavers at an advanced stage of 
decomposition, when soft tissues or biological fluids are too degraded 
[33]. An additional reason for developing a predictive model for rib 
cartilage was that the models developed in our previous studies for 
blood, oral mucosa, and bone did not correctly predict the age of 
cartilage. Therefore, the present study aimed to develop a cartilage age 
prediction model based on three CpG sites analyzed with the VISAGE 
Enhanced Tool for age prediction from somatic tissues [32] using 
multivariate quantile regression as the predictive framework. A total of 
109 costal cartilage samples ranging from 19 to 74 years were used to 
train the model. K-fold cross-validation was used for validation pur-
poses, as well as an independent testing set composed of 72 samples 
from 19 to 75 years. Additionally, the VISAGE Enhanced Tool was 
adapted for tissue identification purposes covering the cell types tar-
geted for age inference. Thus, a tissue prediction model for differenti-
ating blood, buccal cells, bone, and cartilage was created using 
multinomial logistic regression based on a training set composed of 392 
samples. We used k-fold cross-validation for validation, as well as a 
testing set composed of 192 samples, both training and test sets con-
tained the four tissues of interest. 

2. Material and Methods 

2.1. Samples, DNA extraction, and quantification 

The study was approved by the Bioethics Committee of the Jagiel-
lonian University in Kraków, Poland (KBET/122.6120.86.2017). A total 
of 181 costal cartilage samples were collected during medicolegal au-
topsies at the Department of Forensic Medicine, Jagiellonian University 
Medical College in Krakow, Poland. The study group consisted of 145 
males and 36 females in the age range of 19–75 years (mean 44.3 ±
14.6) and with a time from death to autopsy ranging from 1 to 5 days. 
The costal cartilage portions (5 × 6 cm) were collected from the ca-
davers’ rib arches and stored at − 80 ◦C until further processing. Before 
starting the genetic analysis, the sampled material was cleaned by 
removing its external surface and any contamination, using a sterile 
scalpel, and then fragmented into small cubes. The fragmented tissue 
was placed in 1.5 ml Eppendorf tubes and incubated in an extraction 
mixture (Sherlock AX kit, A&A Biotechnology, Poland) at 50 ◦C in a 
Thermo–Shaker TS-100 C (Biosan) at 500 rpm for 24 h. Total DNA was 
extracted using a silica-based method with the Sherlock AX kit, ac-
cording to the manufacturer’s protocol. In addition, a total of 125 blood 
samples comprising 62 males and 63 females in the age range of 19–75 
years old, (mean 48.9 ± 17.5); 122 buccal swabs comprising 62 males 
and 60 females in the age range of 19–80 years (mean 49.25 ± 17.9) and 
156 bone samples comprising 125 males and 31 females in the age range 
of 19–75 years (mean 45.9 ± 14.4), were collected in the VISAGE 
project as described in Woźniak et al. [32] and used in this study. The 
quality and quantity of DNA isolates were measured using a NanoDrop 
8000 UV-Vis Spectrophotometer and Qubit dsDNA HS Assay Kit on a 
Qubit 4 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA), 
following manufacturer’s guidelines. 

2.2. Bisulfite conversion, multiplex PCR, and massively parallel 
sequencing 

Bisulfite conversion (BC) was performed with 500 ng of DNA using 
the EZ DNA Methylation-Direct Kit (Zymo Research, Irvine, CA, USA) 
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and then eluted in 25 μL. 
DNA methylation levels were quantified using the VISAGE Enhanced 

Tool age prediction system [32]. The VISAGE MPS assay is based on PCR 
enrichment of targeted regions from bisulfite-converted DNA [34] and 
analyses of 44 CpG sites in eight age informative markers, namely 
KLF14, TRIM59, MIR29B2CHG, FHL2, ELOVL2, EDARADD, PDE4C and 
ASPA. In brief, 5 μL of the bisulfite-converted DNA samples were 
amplified in one multiplex PCR assay and libraries prepared using the 
KAPA Hyper Prep Kit and KAPA Unique-Dual Indexed Adapters (Roche, 
Basel, Switzerland). All samples were sequenced on the MiSeq instru-
ment using the MiSeq Reagent Kit v3 (600 cycles) (Verogen, San Diego, 
CA, USA) with 2 × 150 cycles. Control and test samples were sequenced 
together in one run if the used indexes allowed multiplexing to avoid 
batch effects. Pooled libraries were diluted to 12pM and sequenced with 
a 10% PhiX spike. 

Raw data in FASTQ files were aligned against a custom reference 
genome using a bwa-meth method as described in detail in Woźniak 
et al. [32]. The number of reads at the target positions were extracted 
using bam-readcount with a minimum mapping quality and minimum 
base quality set to 30 (https://github.com/genome/bam-readcount); 
DNA methylation levels were calculated as the ratio of C reads to the 
sum of C and T reads and expressed as a percentage (C reads/(C reads +
T reads) * 100). 

2.3. Statistical analyses 

All calculations were performed using R software v.4.2.2 applying R 
scripts developed in-house. Spearman correlation (rs) was used to assess 
correlations between DNA methylation levels and chronological age. 
Multivariate quantile regression with quantiles 0.1 and 0.9 was used to 
build the age prediction model with the quantreg R package [35]. The 
corresponding predictive accuracy was measured with the following 
performance metrics: mean absolute error (MAE) and root-mean-square 
error (RMSE). Although when working with quantiles, the MAE can be 
represented by the median instead of the mean, the mean was used in the 
present study for comparative purposes with additional models. Pre-
dicted versus chronological age was plotted using the ggplot2 R package 
[36]. The final online cartilage age prediction model developed in our 
study has been placed in the open access Snipper forensic classification 
website and is freely available at: http://mathgene.usc. 
es/cgi-bin/snps3/age_tools/processmethylation-cartilage.cgi. Multino-
mial logistic regression was used for the development of the tissue 
prediction model using the nnet R package [37]. The corresponding 
predictive accuracy was measured with the following performance 
metrics: percent of correct classifications (%CC), sensitivity and speci-
ficity. Principal components were plotted using the factoextra R package 
[38]. Validation of the prediction models was performed using k-fold 
cross-validation (k = 10). The k-fold cross-validation system randomly 
cleaves input data into k fragments of similar sample size. Random 
cleavage of the input data was made using the cvTools R package [39]. 
Every k time that the model was assessed, a k cluster was retained as the 
test set with the remaining clusters used as the training set, maintaining 
proportions of 10% and 90% of the input data for test and training sets 
respectively, per run. The final online tissue prediction model developed 
in our study has been placed in the open access Snipper forensic clas-
sification website and is freely available at: http://mathgene.usc.es/c-
gi-bin/snps3/tissue_tools/processmethylation-tissue.cgi. 

3. Results 

3.1. CpG selection for age estimation in cartilage samples 

A total of 44 CpGs located in eight genes (KLF14, TRIM59, 
MIR29B2CHG, FHL2, ELOVL2, EDARADD, PDE4C and ASPA) were 
analyzed in 181 costal cartilage samples. Specific information for the 
CpGs analyzed is outlined in Supplementary Table S1 and dispersion 

diagrams are shown in Supplementary Fig. S1. The corresponding DNA 
methylation data can be found in Supplementary Table S2. Three genes 
were discarded for the subsequent age estimation analyses due to a lack 
of, or weak correlation with age: MIR29B2CHG, EDARADD and ASPA 
(mean rs: 0.04, − 0.113 and 0.166, respectively). Patterns of hyper-
methylation were shown for the remaining five genes. The gene that had 
the highest correlation with age was FHL2 for the CpG C4 (rs: 0.931), 
followed by TRIM59 for C7 (rs: 0.906), KLF14 for C3 (rs: 0.888), PDE4C 
for C6 (rs: 0.802) and lastly ELOVL2 for C9 (rs: 0.794). These eight CpG 
sites were initially selected for building the cartilage age prediction 
model. 

3.2. Development of an age prediction model for cartilage samples 

From a total of 181 costal cartilage samples, a subset of 109 (19–74 
years old) was used for training the cartilage age prediction model. 
Multivariate quantile regression was tested with one-step increases in 
the total number of CpG sites included. The CpG sites were retained in 
the successive models following a decreasing order of correlation with 
age, and the addition of CpG sites stopped when no additional 
improvement was apported to the model. Table 1 shows the corre-
sponding cross-validation performance metrics for the training set for 
the four assessed models (M1, M2, M3 and M4) In this way, the CpG with 
the highest Spearman correlation was assessed in the first model M1 
(FHL2_C4), providing an MAE of ± 4.61 years and RMSE of 5.81. For the 
addition of a second CpG, TRIM59_C7 was analyzed (M2). Results ob-
tained from M2 (FHL2_C4 and TRIM59_C7), provided an MAE of ± 4.47 
years and RMSE of 5.76. The third most age-correlated CpG of KLF14_C3 
was included in M3 (FHL2_C4, TRIM59_C7 and KLF14_C3) showing an 
MAE of ± 4.41 years and RMSE of 5.52. The fourth most age-correlated 
CpG was PDE4C_C6 included in M4 (FHL2_C4, TRIM59_C7, KLF14_C3 
and PDE4C_C6). This model provided an MAE of ± 4.41 years and RMSE 
of 5.53. Since M4 do not improve the previous model M3, one-step in-
creases were stopped at this point. 

From these analyses, the optimum age prediction model was iden-
tified to be M3 (FHL2_C4, TRIM59_C7 and KLF14_C3) since this model 
provided the most accurate predictions. Therefore, M3 was selected as 
the final age prediction model for cartilage samples. To validate the final 
model, an independent subset of 72 samples (19–75 years old) was 
analyzed and provided an MAE of ± 4.26 years and RMSE of 5.39.  
Figs. 1A and 1B show the predicted age versus the chronological age for 
the training and test sets assessed with the M3 model. Continuous grey 
and black lines represent perfect and fitted correlations, respectively, 
while discontinuous black lines represent the age-specific prediction 
intervals. We detected correlation of the predicted with the chronolog-
ical age with an R2 value of 0.863 and 0.864 for the training and test sets, 
respectively. However, a slight overestimation of age in young 

Table 1 
Predictive performance metrics for the training (cross-validation) and test sets in 
cartilage for four age prediction models tested using quantile regression. MAE: 
Mean Absolute Error, RMSE (Root-Mean-Square Error). Bold indicates the 
selected model.   

Model CpG nº CpG_ID MAE RMSE 

Training 
age 
cartilage 
(n ¼ 109) 

M1  1 FHL2_C4 ± 4.61  5.81 
M2  2 FHL2_C4 

TRIM59_C7 
± 4.47  5.76 

M3  3 FHL2_C4 
TRIM59_C7 
KLF14_C3 

± 4.41  5.52 

M4  4 FHL2_C4 
TRIM59_C7 
KLF14_C3 
PDE4C_C6 

± 4.41  5.53 

Test 
age 
cartilage (n ¼ 72) 

M3  3 FHL2_C4 
TRIM59_C7 
KLF14_C3 

± 4.26  5.39  
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individuals as well as a moderate underestimation in older samples is 
observed in the test set. 

The following equation describes the multivariate quantile regres-
sion model M3: 

Predicted age in years = − 0.79 + (0.65 x FHL2_C4) + (0.04 x 
TRIM59_C7) + (2.05 x KLF14_C3). 

Prediction intervals were estimated using the following equations: 
Minimum Prediction (MinPred, q 0.1) = 1.16 + (0.33 x FHL2_C4) 

+ (0.47 x TRIM59_C7) + (1.93 x KLF14_C3). 
Maximum Prediction (MaxPred, q 0.9) = − 2.55 + (0.79 x FHL2_C4) 

- (0.06 x TRIM59_C7) + (2.28 x KLF14_C3). 
The final cartilage age prediction model M3 is freely available from 

the open-access Snipper forensic classification website described in 
Material and Methods. 

3.3. CpG selection for the inference of the tissue of origin 

In addition to the 181 cartilage samples, the 44 CpGs located in 
KLF14, TRIM59, MIR29B2CHG, FHL2, ELOVL2, EDARADD, PDE4C and 
ASPA were also analyzed in 125 blood samples, 122 buccal swabs and 
156 bone samples, using DNA methylation data gathered in Woźniak 
et al. The corresponding DNA methylation data can be found in Sup-
plementary Table S3. The corresponding dispersion diagrams are shown 
in Supplementary Fig. S2 and the mean DNA methylation values per 
tissue for all 44 CpG sites in Supplementary Table S4. The DNA 
methylation levels for two of the genes previously discarded for age 
estimation – MIR29B2CHG and EDARADD – showed a marked difference 
between cartilage samples and the remaining somatic tissues. The three 
CpG sites analyzed for MIR29B2CHG (C1, C2 and C3) showed contin-
uous patterns of methylation of about ~10–60% (mean: 33.81%) in 
cartilage samples, while higher methylation levels were found for blood 
(mean: 75.01%), buccal cells (mean: 78.53%) and bone (mean: 85.17%). 
The opposite pattern was detected in EDARADD (C1 and C2). Contin-
uous hypermethylation was observed in cartilage samples (mean: 
83.47%), whereas the additional somatic tissues had lower levels of 
methylation (mean: 38.75%). The ASPA gene previously discarded for 
age estimation, was informative for blood samples with the highest 
differences in DNA methylation values (mean: 72.16%) compared to 
other somatic tissues (mean: 32.51%). In genes KLF14, TRIM59, FHL2, 

ELOVL2 and PDE4C, patterns of tissue differentiation were evident in 
most of the CpGs in these genes. In the case of KLF14, C1 gave the 
highest differences in DNA methylation levels between bone (mean: 
12.9%) and other tissues (mean: 6.5%). In TRIM59, although some 
overlapping values were detected between blood and buccal cells for 
young individuals, methylation differences were observed among the 
four tissues – blood, buccal cells, bone, and cartilage – for C1 (mean: 
25.73%, 34.82%, 14% and 7.3%, respectively), C2 (mean: 20.49%, 
28.25%, 9.93% and 5.62%, respectively), C3 (mean: 29.92%, 46.35%, 
17.32% and 12.74%, respectively), C4 (mean: 47.22%, 61.37%, 29.07% 
and 18.85%, respectively) and C5 (mean: 45.99%, 62.13%, 26.58% and 
19.27%, respectively); while C3, C6, C7 and C8 had overlapping values 
between bone and cartilage. In FHL2, the highest differences in DNA 
methylation levels were detected between blood samples and other 
tissues (difference in DNA methylation levels for blood versus the 
remaining tissues: 32.92%, 34.09%, 33.04%, 34.11%, 30.19%, 29.54%, 
16.32%, 13.65%, 28.36% and 8.97%, from C1 to C10, respectively). The 
differentiation of buccal cells was also achieved with FHL2, but partially, 
since a portion of samples had marked levels of hypomethylation, but 
the remaining proportion overlapped with bone and cartilage. ELOVL2 
had methylation differences among the four tissues for all the C1 to C9 
analyzed CpGs (mean: 49.53%, 63.33%, 28.15% and 16.85% for blood, 
buccal cells, bone, and cartilage, respectively). In PDE4C, simultaneous 
differentiation of the four tissues was mainly shown by C3 (mean: 
33.36%, 25.1%, 11.91% and 7.01%, for blood, buccal cells, bone, and 
cartilage, respectively). 

To select the most informative CpGs, each marker was assessed using 
multinomial logistic regression. Supplementary Table S5 shows the 
corresponding mean percentage of correct classifications for all the 44 
CpGs analyzed in the eight genes. The following CpGs gave the highest 
rate of correct classifications per gene and were selected for further 
analyses: EDARADD_C1 (76.37%), TRIM59_C1 (76.54%), ELOVL2_C6 
(72.09%), MIR29B2CHG_C3 (71.4%), PDE4C_C3 (70.03%), ASPA_C1 
(63.53%), FHL2_C10 (61.3%) and KLF14_C1 (51.2%). These eight CpG 
sites were then selected to build a tissue prediction model. 

Fig. 1. Plot of predicted age against chronological age for cartilage in: A) the training set (n = 109, 19–74 years old); and B) the test set (n = 72, 19–75 years). 
Predicted age was inferred from a multivariate quantile regression model based on three CpG sites (FHL2_C4, TRIM59_C7 and KLF14_C3). The black diagonal line 
represents the 0.5 quantile regression line between predicted age and chronological age and the discontinuous black lines, the corresponding 0.1 and 0.9 quantile 
regression limits (prediction intervals). The grey line is the diagonal line representing perfect correlation. 
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3.4. A multinomial logistic prediction model for somatic tissue 
differentiation 

Based on the DNA methylation differences amongst different tissues 
outlined above, a tissue prediction model was developed using logistic 
regression. In order to build the model, a training set of 392 samples was 
assessed (n = 87 blood samples, n = 86 buccal swabs, n = 110 bone and 
n = 109 cartilage samples). Using this training set, a total of eight sta-
tistical models based on multinomial logistic regression were tested with 
one-step increases in the number of CpG sites included (M1, M2, M3, 
M4, M5, M6 and M7 and M8). Table 2 shows the corresponding cross- 
validation performance metrics for the training set for the eight evalu-
ated models. The CpG sites were serially included in the models 
following a decreasing order of correct classification rate, as described 
above. Using this approach, the CpG site providing the highest level of 
correct classifications was evaluated in the first model M1 (EDAR-
ADD_C1) correctly classifying 77.3% of the samples and showing a 
sensitivity of 0.76 and a specificity of 0.924. Each time an additional 
CpG site was incorporated into the model, including TRIM59_C1 in M2, 
ELOVL2_C6 in M3, MIR29B2CHG_C3 in M4, PDE4C_C3 in M5, ASPA_C1 
in M6, FHL2_C10 in M7 and KLF14_C1 in M8; the rate of correct clas-
sifications increased to reach a maximum of 98.72% for M8 (all the eight 
CpGs sites included), as well as 0.988 for sensitivity and 0.996 for 
specificity, so M8 was selected as the final tissue prediction model. 
Listed per tissue, the following results were obtained for blood (98.85% 
correct classification, 0.989 sensitivity, 0.993 specificity), for buccal 
swabs (%CC: 100%, sensitivity: 1 specificity: 0.997), for bone (%CC: 

96.36%, sensitivity: 0.964 specificity: 1) and for cartilage samples (%CC: 
100%, sensitivity: 1 specificity: 0.993). Principal Component Analysis 
(PCA) results based on the eight CpGs (EDARADD_C1, TRIM59_C1, 
ELOVL2_C6, MIR29B2CHG_C3, PDE4C_C3, ASPA_C1, FHL2_C10 and 
KLF14_C1) are plotted in Fig. 2A. Blood samples, buccal swabs, bone, 
and cartilage samples are represented as red, orange, violet and green 
datapoints, respectively. The first Principal Component (PC1) explains 
49.7% of tissue separation, and the second, PC2, 27.9%. To validate the 
tissue prediction model, a test set of 192 samples (n = 38 blood samples, 
n = 36 buccal swabs, n = 46 bone and n = 72 cartilage samples) was 
assessed and gave 97.4% correct classifications, a sensitivity of 0.968 
and specificity of 0.991. Listed per tissue these gave the following values 
for blood (%CC: 97.3%, sensitivity: 0.973 specificity: 0.987), for buccal 
swabs (%CC: 89.74%, sensitivity: 0.897 specificity: 0.993), for bone (% 
CC: 100%, sensitivity: 1 specificity: 0.993) and for cartilage samples (% 
CC: 100%, sensitivity: 1 specificity: 0.992). The corresponding PCA is 
shown in Fig. 2B. The main difference in comparison to the training set 
was the decrease in the classification rate for buccal swabs (from 100% 
to 89.74%). This is due to four misclassifications (two samples predicted 
as blood, one sample as bone and one as cartilage). The remaining tis-
sues gave similar classification rates between the training and testing 
sets. The final tissue prediction model is freely available from the open- 
access Snipper forensic classification website described in Material and 
Methods. 

Table 2 
Predictive performance metrics for the training (cross-validation) and testing set for the somatic tissue prediction model developed using multinomial logistic 
regression (blood vs buccal cells vs bone vs cartilage samples). %CCmean (mean of the percent of correct classifications). Bold indicates the selected model.   

Model CpG nº CpG_ID %CCmean Sensitivitymean Specificitymean 

Training 
tissue 
(n ¼ 392) 

M1  1 EDARADD_C1 77.3%  0.76  0.924 
M2  2 EDARADD_C1 

TRIM59_C1 
86.97%  0.862  0.957 

M3  3 EDARADD_C1 
TRIM59_C1 
ELOVL2_C6 

89.28%  0.884  0.965 

M4  4 EDARADD_C1 
TRIM59_C1 
ELOVL2_C6 
MIR29B2CHG_C3 

91.84%  0.913  0.973 

M5  5 EDARADD_C1 
TRIM59_C1 
ELOVL2_C6 
MIR29B2CHG_C3 
PDE4C_C3 

96.18%  0.958  0.987 

M6  6 EDARADD_C1 
TRIM59_C1 
ELOVL2_C6 
MIR29B2CHG_C3 
PDE4C_C3 
ASPA_C1 

96.68%  0.965  0.989 

M7  7 EDARADD_C1 
TRIM59_C1 
ELOVL2_C6 
MIR29B2CHG_C3 
PDE4C_C3 
ASPA_C1 
FHL2_C10 

98.21%  0.98  0.994 

M8  8 EDARADD_C1 
TRIM59_C1 
ELOVL2_C6 
MIR29B2CHG_C3 
PDE4C_C3 
ASPA_C1 
FHL2_C10 
KLF14_C1 

98.72%  0.988  0.996 

Test 
tissue 
(n ¼ 192) 

M8  8 FHL2_C4 
TRIM59_C7 
KLF14_C3 

97.4%  0.968  0.991  
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4. Discussion 

Age estimation using epigenetic markers has been widely explored 
during the last ten years [40]. The observation of high correlation of 
DNA methylation levels with chronological age has been translated into 
a large list of age prediction models. Since DNA methylation is 
tissue-dependent, models are usually developed based on specific tis-
sues. Indeed, to date, age estimation has been mainly focused on the 
most commonly analyzed forensic tissues such as blood [41,42], buccal 
cells [43], saliva [44], semen [45,46] or nails [47]. Nevertheless, skel-
etal remains are also important sources of biological material for both 
forensic and anthropological analyses. To address such DNA analyses, 
several studies have introduced age prediction models for teeth and 
bone [48–50]. Although at the moment multiple age prediction models 
can be found in the literature, few provide coverage for various tissues at 
the same time. Ten years ago, Horvath reported the first pan-tissue 
epigenetic clock applicable to 51 tissues and cell types [28], five of 
them forensically relevant: blood, buccal cells, saliva, epidermis and 
knee cartilage. However, the Horvath model needs DNA methylation 
data for 353 CpG sites that is not useful when working with DNA samples 
of poor quality and quantity common to forensic analysis. In order to 
solve this constrain, in 2019, Jung et al. introduced the first forensic 
tissue-combined model for age inference covering three somatic tissues – 
blood, saliva and buccal swabs – using capillary electrophoresis [31]. 
Two years later, the VISAGE Enhanced Tool was developed based on 
massively parallel sequencing, designed to estimate age from blood and 
buccal cells, as well as bone samples [32]. 

Regarding additional forensic specimens affected by decomposition, 
an initial attempt to infer age was recently undertaken by Becker et al. 
[51]. In this study, age estimation for elastic cartilage from the epiglottis 
was explored using a protein clock based on racemization of aspartic 
acid and accumulation of pentosidine, which provided an MAE of ± 4 
years. Moreover, costal cartilage samples were also explored using the 
age prediction model developed for bone generated with the VISAGE 
Enhanced Tool [32]. Nevertheless, high prediction errors were obtained 
(MAE: ± 25.8 years for cartilage samples compared to ± 3.4 years for 
bone) [32], thus justifying our development of an age prediction model 

specifically for cartilage. 
To the best of our knowledge, this is the first study reporting forensic 

age estimation for cartilage based on DNA methylation. To establish an 
efficient predictive model, the VISAGE Enhanced Tool comprising a total 
of 44 CpG sites located in eight genes (KLF14, TRIM59, MIR29B2CHG, 
FHL2, ELOVL2, EDARADD, PDE4C and ASPA) has been explored in 181 
costal cartilage samples representing a full adult age range [32]. From 
these candidates, three CpG sites from three genes were selected to build 
the cartilage-specific age prediction model using multivariate quantile 
regression (FHL2_C4, TRIM59_C7 and KLF14_C3). Cross-validation of the 
model provided an MAE of ± 4.41 years and RMSE of 5.52. When 
assessing this tool in an independent test set, comparable results were 
obtained (MAE: ± 4.26 years, RMSE: 5.39), which were also similar to 
the values obtained from the protein clock-based system reported by 
Becker et al. (MAE: ± 4.0 years) [51]. However, prediction errors for the 
cartilage model were slightly higher if comparing with other epigenetic 
clocks generated from the VISAGE Enhanced Tool for blood (MAE: ± 3.2 
years), buccal cells (MAE: ± 3.7 years) and bone (MAE: ± 3.4 years) 
[32]. When plotting the predicted age against chronological age (Fig. 1), 
a slight overestimation of age in young samples as well as an underes-
timation in older ones was observed, especially in the test set, which 
indicates the utility of age-specific prediction intervals compared to the 
predicted age. Although both training and test sets have similar age 
range distributions, this effect could be explained by a reduced sample 
size (n = 109 and n = 72, for training and test sets, respectively). 
However, due to the nature of the specimens, broadly-based sample 
collection for a complete age range is difficult to achieve. 

As a supplementary analysis to age estimation, identification of the 
biological source of a stain using DNA methylation analysis becomes a 
useful application in forensic genetics. The initial development of the 
VISAGE Enhanced Tool for age prediction from somatic tissues allowed 
the inference of the epigenetic age of somatic tissues such as blood, 
buccal cells and bone [32], which is now extended to cartilage samples. 
To broaden the applications of this MPS tool, a tissue prediction model 
was additionally developed. DNA methylation has previously shown its 
potential for tissue identification based on the fact that this epigenetic 
signature affects gene expression and therefore, genomic loci are 

Fig. 2. Principal Component Analysis (PCA) based on eight CpGs (EDARADD_C1, TRIM59_C1, ELOVL2_C6, MIR29B2CHG_C3, PDE4C_C3, ASPA_C1, FHL2_C10 and 
KLF14_C1) for A) the training (n = 392: 109 cartilage samples, 110 bone samples, 87 blood samples and 86 buccal swabs) and B) the testing set (n = 192: 72 cartilage 
samples, 46 bone samples, 38 blood samples and 36 buccal swabs). Blood samples, buccal swabs, bone, and cartilage are depicted as red, orange, violet and green 
datapoints, respectively. 
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differentially methylated between tissues. However, selection of previ-
ous markers was exclusively made to accomplish tissue differentiation 
[52–54]. Moreover, assessment of such assays was based on the detec-
tion of the marker presenting the methylated signal, leading to a direct 
assignment to the corresponding tissue of origin. In the present model, a 
quantitative rather than a qualitative evaluation was applied. Therefore, 
the novelty of this assay consists not only in simultaneous use of the 
VISAGE Enhanced Tool for inference of age and tissue source, but on 
developing a different approach for the latter. From the 44 CpG sites 
analyzed, eight markers were selected to build the tissue prediction 
model using multinomial logistic regression (EDARADD_C1, TRIM59_C1, 
ELOVL2_C6, MIR29B2CHG_C3, PDE4C_C3, ASPA_C1, FHL2_C10 and 
KLF14_C1), classifying blood, buccal cells, bone, and cartilage. Although 
not all the eight markers contributed to a full separation of the four 
tissues, cross-validation of the 8-CpG combined model provided 98.72% 
correct classifications, with high sensitivity (0.988) and specificity 
(0.996) values. The assessment of an independent testing set led to 
similar results of 97.4% of correct classifications, 0.968 for sensitivity 
and 0.991 for specificity. 

To date, methods for body fluid identification have largely relied on 
chemical or immunological tests [55]. However, lack of specificity and 
requirements for large amounts of sample related to these methods can 
be solved using epigenetic markers. In this way, through a single reac-
tion, differentiation of four potential tissue sources can be achieved. 
Since it is relevant to detect the presence of body fluids or tissues in 
biological specimens, differentiation between blood and buccal cells can 
add a determinant value to the forensic investigations. However, dif-
ferentiation between cartilage and bone is much less critical for forensic 
purposes, since sample collection determines per se the origin of the 
sample. Differences between cartilage and bone in EDARADD have been 
previously found in other animal species, such as Baboons [56]. 
Although from a forensic point of view, the differentiation of cartilage 
and bone is largely unnecessary; we note that epigenetic differences 
between both tissues could be useful in clinical applications when 
studying the development of degenerative diseases such as osteoarthritis 
[57]. 
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