41 research outputs found
Recommended from our members
Presphenoidal synchondrosis fusion in DBA/2J mice
Cranial base growth plates are important centers of longitudinal growth in the skull and are responsible for the proper anterior placement of the face and the stimulation of normal cranial vault development. We report that the presphenoidal synchondrosis (PSS), a midline growth plate of the cranial base, closes in the DBA/2J mouse strain but not in other common inbred strains. We investigated the genetics of PSS closure in DBA/2J mice by evaluating F1, F1 backcross, and/or F1 intercross offspring from matings with C57BL/6J and DBA/1J mice, whose PSS remain open. We observed that PSS closure is genetically determined, but not inherited as a simple Mendelian trait. Employing a genome-wide SNP array, we identified a region on chromosome 11 in the C57BL/6J strain that affected the frequency of PSS closure in F1 backcross and F1 intercross offspring. The equivalent region in the DBA/1J strain did not affect PSS closure in F1 intercross offspring. We conclude that PSS closure in the DBA/2J strain is complex and modified by different loci when outcrossed with C57BL/6J and DBA/1J mice. Electronic supplementary material The online version of this article (doi:10.1007/s00335-012-9437-8) contains supplementary material, which is available to authorized users
The uncertain relationship between transparency and accountability
The concepts of transparency and accountability are closely linked: transparency is supposed to generate accountability. This article questions this widely held assumption. Transparency mobilises the power of shame, yet the shameless may not be vulnerable to public exposure. Truth often fails to lead to justice. After exploring different definitions and dimensions of the two ideas, the more relevant question turns out tobe: what kinds of transparency lead to what kinds of accountability, and under what conditions? The article concludes by proposing that the concept can be unpacked in terms of two distinct variants. Transparency can be either âclearâorâopaqueâ, while accountability can be eitherâsoftâorâhardâ
Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people
The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 x 10(-8)) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits.Peer reviewe
Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people
The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30-80%, depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures: word reading, nonword reading, spelling, phoneme awareness, and nonword repetition, in samples of 13,633 to 33,959 participants aged 5-26 years. We identified genome-wide significant association with word reading (rs11208009, p=1.098 x 10-8) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP-heritability, accounting for 13-26% of trait variability. Genomic structural equation modelling revealed a shared genetic factor explaining most variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis of multivariate GWAS results with neuroimaging traits identified association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain, and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide new avenues for deciphering the biological underpinnings of uniquely human traits
Recommended from our members
Underplanted conifer seedling survival and growth in thinned Douglas-fir stands
In a multilevel study to determine limits to underplanted conifer seedling growth, Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), grand fir (Abies grandis (Dougl. ex D. Don) Lindl.), western redcedar (Thuja plicata Donn ex D. Don), and western hemlock (Tsuga heterophylla (Raf.) Sarg.) seedlings were planted beneath second-growth Douglas-fir stands that had been thinned to basal areas ranging from 16 to 31 m2/ha. Understory vegetation was treated with a broadcast herbicide application prior to thinning, a directed release herbicide application 2 years later, or no treatment beyond harvest disturbance. Residual overstory density was negatively correlated with percent survival for all
four species. Broadcast herbicide application improved survival of grand fir and western hemlock. Western redcedar,
grand fir, and western hemlock stem volumes were inversely related to overstory tree density, and this effect increased
over time. There was a strong indication that this was also the case for Douglas-fir. Reduction of competing understory
vegetation resulted in larger fourth-year stem volumes in grand fir and western hemlock