146 research outputs found

    Are there biological differences between screen-detected and interval colorectal cancers in the English Bowel Cancer Screening Programme?

    Get PDF
    Background: We measured biomarkers of tumour growth and vascularity in interval and screen-detected colorectal cancers (CRCs) in the English Bowel Cancer Screening Programme in order to determine whether rapid tumour growth might contribute to interval CRC (a CRC diagnosed between a negative guaiac stool test and the next scheduled screening episode). Methods: Formalin-fixed, paraffin-embedded sections from 71 CRCs (screen-detected 43, interval 28) underwent immunohistochemistry for CD31 and Ki-67, in order to measure the microvessel density (MVD) and proliferation index (PI), respectively, as well as microsatellite instability (MSI) testing. Results: Interval CRCs were larger (P=0.02) and were more likely to exhibit venous invasion (P=0.005) than screen-detected tumours. There was no significant difference in MVD or PI between interval and screen-detected CRCs. More interval CRCs displayed MSI-high (14%) compared with screen-detected tumours (5%). A significantly (P=0.005) higher proportion (51%) of screen-detected CRC resection specimens contained at least one polyp compared with interval CRC (18%) resections. Conclusions: We found no evidence of biological differences between interval and screen-detected CRCs, consistent with the low sensitivity of guaiac stool testing as the main driver of interval CRC. The contribution of synchronous adenomas to occult blood loss for screening requires further investigation

    Biomechanics and hydrodynamics of prey capture in the Chinese giant salamander reveal a high-performance jaw-powered suction feeding mechanism

    Get PDF
    During the evolutionary transition from fish to tetrapods, a shift from uni- to bidirectional suction feeding systems followed a reduction in the gill apparatus. Such a shift can still be observed during metamorphosis of salamanders, although many adult salamanders retain their aquatic lifestyle and feed by high-performance suction.Unfortunately, little is known about the interplay between jaws and hyobranchial motions to generate bidirectional suction flows. Here,we study the cranial morphology, aswell as kinematic and hydrodynamic aspects related to prey capture in the Chinese giant salamander (Andrias davidianus). Compared with fish and previously studied amphibians, A. davidianus uses an alternative suction mechanismthat mainly relies on accelerating water by separating the ‘plates’ formed by the long and broad upper and lower jaw surfaces. Computational fluid dynamics simulations, based on three-dimensional morphology and kinematical data from high-speed videos, indicate that the viscerocranial elements mainly serve to accommodate the water that was given a sufficient anterior-to-posterior impulse beforehand by powerful jawseparation.We hypothesize that this modifiedway of generating suction is primitive for salamanders, and that this behaviour could have played an important role in the evolution of terrestrial life in vertebrates by releasing mechanical constraints on the hyobranchial system

    Exercise and cognitive function: a hypothesis for the association of type II diabetes mellitus and Alzheimer's disease from an evolutionary perspective

    Get PDF
    The association of type II diabetes mellitus (DM2) with Alzheimer's disease (AD) has received considerable attention in recent years. In the present paper, a hypothesis for this association from an evolutionary perspective, with emphasis on the close interplay between exercise and cognitive function, will be advanced in order to provide a biological rationale for the notion that the fundamental metabolic features of DM2 act in the brain over a protracted time span to induce the neuropathological characteristics of Alzheimer's disease thereby producing cognitive impairment. It is hoped that this hypothesis puts the association of DM2 and AD on firm conceptual grounds from a biological perspective and offers directions for further research

    Lucy's Flat Feet: The Relationship between the Ankle and Rearfoot Arching in Early Hominins

    Get PDF
    BACKGROUND. In the Plio-Pleistocene, the hominin foot evolved from a grasping appendage to a stiff, propulsive lever. Central to this transition was the development of the longitudinal arch, a structure that helps store elastic energy and stiffen the foot during bipedal locomotion. Direct evidence for arch evolution, however, has been somewhat elusive given the failure of soft-tissue to fossilize. Paleoanthropologists have relied on footprints and bony correlates of arch development, though little consensus has emerged as to when the arch evolved. METHODOLOGY/PRINCIPAL FINDINGS. Here, we present evidence from radiographs of modern humans (n=261) that the set of the distal tibia in the sagittal plane, henceforth referred to as the tibial arch angle, is related to rearfoot arching. Non-human primates have a posteriorly directed tibial arch angle, while most humans have an anteriorly directed tibial arch angle. Those humans with a posteriorly directed tibial arch angle (8%) have significantly lower talocalcaneal and talar declination angles, both measures of an asymptomatic flatfoot. Application of these results to the hominin fossil record reveals that a well developed rearfoot arch had evolved in Australopithecus afarensis. However, as in humans today, Australopithecus populations exhibited individual variation in foot morphology and arch development, and "Lucy" (A.L. 288-1), a 3.18 Myr-old female Australopithecus, likely possessed asymptomatic flat feet. Additional distal tibiae from the Plio-Pleistocene show variation in tibial arch angles, including two early Homo tibiae that also have slightly posteriorly directed tibial arch angles. CONCLUSIONS/SIGNIFICANCE. This study finds that the rearfoot arch was present in the genus Australopithecus. However, the female Australopithecus afarensis "Lucy" has an ankle morphology consistent with non-pathological flat-footedness. This study suggests that, as in humans today, there was variation in arch development in Plio-Pleistocene hominins.Leakey Foundatio

    Confrontational scavenging as a possible source for language and cooperation

    Get PDF
    The emergence of language and the high degree of cooperation found among humans seems to require more than a straightforward enhancement of primate traits. Some triggering episode unique to human ancestors was likely necessary. Here it is argued that confrontational scavenging was such an episode. Arguments for and against an established confrontational scavenging niche are discussed, as well as the probable effects of such a niche on language and co-operation. Finally, several possible directions for future research are suggested

    Diagnostic Accuracy of Age and Alarm Symptoms for Upper GI Malignancy in Patients with Dyspepsia in a GI Clinic: A 7-Year Cross-Sectional Study

    Get PDF
    <div><h3>Objectives</h3><p>We investigated whether using demographic characteristics and alarm symptoms can accurately predict cancer in patients with dyspepsia in Iran, where upper GI cancers and <em>H. pylori</em> infection are common.</p> <h3>Methods</h3><p>All consecutive patients referred to a tertiary gastroenterology clinic in Tehran, Iran, from 2002 to 2009 were invited to participate in this study. Each patient completed a standard questionnaire and underwent upper gastrointestinal endoscopy. Alarm symptoms included in the questionnaire were weight loss, dysphagia, GI bleeding, and persistent vomiting. We used logistic regression models to estimate the diagnostic value of each variable in combination with other ones, and to develop a risk-prediction model.</p> <h3>Results</h3><p>A total of 2,847 patients with dyspepsia participated in this study, of whom 87 (3.1%) had upper GI malignancy. Patients reporting at least one of the alarm symptoms constituted 66.7% of cancer patients compared to 38.9% in patients without cancer (p<0.001). Esophageal or gastric cancers in patients with dyspepsia was associated with older age, being male, and symptoms of weight loss and vomiting. Each single predictor had low sensitivity and specificity. Using a combination of age, alarm symptoms, and smoking, we built a risk-prediction model that distinguished between high-risk and low-risk individuals with an area under the ROC curve of 0.85 and acceptable calibration.</p> <h3>Conclusions</h3><p>None of the predictors demonstrated high diagnostic accuracy. While our risk-prediction model had reasonable accuracy, some cancer cases would have remained undiagnosed. Therefore, where available, low cost endoscopy may be preferable for dyspeptic older patient or those with history of weight loss.</p> </div

    The distinctive gastric fluid proteome in gastric cancer reveals a multi-biomarker diagnostic profile

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overall gastric cancer survival remains poor mainly because there are no reliable methods for identifying highly curable early stage disease. Multi-protein profiling of gastric fluids, obtained from the anatomic site of pathology, could reveal diagnostic proteomic fingerprints.</p> <p>Methods</p> <p>Protein profiles were generated from gastric fluid samples of 19 gastric cancer and 36 benign gastritides patients undergoing elective, clinically-indicated gastroscopy using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry on multiple ProteinChip arrays. Proteomic features were compared by significance analysis of microarray algorithm and two-way hierarchical clustering. A second blinded sample set (24 gastric cancers and 29 clinically benign gastritides) was used for validation.</p> <p>Results</p> <p>By significance analysyis of microarray, 60 proteomic features were up-regulated and 46 were down-regulated in gastric cancer samples (<it>p </it>< 0.01). Multimarker clustering showed two distinctive proteomic profiles independent of age and ethnicity. Eighteen of 19 cancer samples clustered together (sensitivity 95%) while 27/36 of non-cancer samples clustered in a second group. Nine non-cancer samples that clustered with cancer samples included 5 pre-malignant lesions (1 adenomatous polyp and 4 intestinal metaplasia). Validation using a second sample set showed the sensitivity and specificity to be 88% and 93%, respectively. Positive predictive value of the combined data was 0.80. Selected peptide sequencing identified pepsinogen C and pepsin A activation peptide as significantly down-regulated and alpha-defensin as significantly up-regulated.</p> <p>Conclusion</p> <p>This simple and reproducible multimarker proteomic assay could supplement clinical gastroscopic evaluation of symptomatic patients to enhance diagnostic accuracy for gastric cancer and pre-malignant lesions.</p

    Relationship between Exercise Capacity and Brain Size in Mammals

    Get PDF
    A great deal of experimental research supports strong associations between exercise, cognition, neurogenesis and neuroprotection in mammals. Much of this work has focused on neurogenesis in individual subjects in a limited number of species. However, no study to date has examined the relationship between exercise and neurobiology across a wide range of mammalian taxa. It is possible that exercise and neurobiology are related across evolutionary time. To test this hypothesis, this study examines the association between exercise and brain size across a wide range of mammals.Controlling for associations with body size, we examined the correlation between brain size and a proxy for exercise frequency and capacity, maximum metabolic rate (MMR; ml O(2) min(-1)). We collected brain sizes and MMRs from the literature and calculated residuals from the least-squares regression line describing the relationship between body mass and each variable of interest. We then analyzed the correlation between residual brain size and residual MMR both before and after controlling for phylogeny using phylogenetic independent contrasts. We found a significant positive correlation between maximum metabolic rate and brain size across a wide range of taxa.These results suggest a novel hypothesis that links brain size to the evolution of locomotor behaviors in a wide variety of mammalian species. In the end, we suggest that some portion of brain size in nonhuman mammals may have evolved in conjunction with increases in exercise capacity rather than solely in response to selection related to cognitive abilities

    A New Direction to Athletic Performance: Understanding the Acute and Longitudinal Responses to Backward Running

    Get PDF
    Backward running (BR) is a form of locomotion that occurs in short bursts during many overground field and court sports. It has also traditionally been used in clinical settings as a method to rehabilitate lower body injuries. Comparisons between BR and forward running (FR) have led to the discovery that both may be generated by the same neural circuitry. Comparisons of the acute responses to FR reveal that BR is characterised by a smaller ratio of braking to propulsive forces, increased step frequency, decreased step length, increased muscle activity and reliance on isometric and concentric muscle actions. These biomechanical differences have been critical in informing recent scientific explorations which have discovered that BR can be used as a method for reducing injury and improving a variety of physical attributes deemed advantageous to sports performance. This includes improved lower body strength and power, decreased injury prevalence and improvements in change of direction performance following BR training. The current findings from research help improve our understanding of BR biomechanics and provide evidence which supports BR as a useful method to improve athlete performance. However, further acute and longitudinal research is needed to better understand the utility of BR in athletic performance programs
    corecore