87 research outputs found

    Unraveling the role of fibroblasts, FGF5 and FGFR2 in HER2-targeted therapies resistance and tumor progression

    Get PDF
    The majority of women with HER2-positive breast cancer will initially respond to trastuzumab and/or other HER2-targeted therapies such as pertuzumab, lapatinib, neratinib and trastuzumab emtansine (T-DM1). However [...]

    TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling

    Get PDF
    In patients, non-proliferative disseminated tumour cells (DTCs) can persist in the bone marrow (BM) while other organs (such as lung) present growing metastasis. This suggested that the BM might be a metastasis ‘restrictive soil’ by encoding dormancy-inducing cues in DTCs. Here we show in a head and neck squamous cell carcinoma (HNSCC) model that strong and specific transforming growth factor-β2 (TGF-β2) signalling in the BM activates the MAPK p38α/β, inducing an (ERK/p38)low signalling ratio. This results in induction of DEC2/SHARP1 and p27, downregulation of cyclin-dependent kinase 4 (CDK4) and dormancy of malignant DTCs. TGF-β2-induced dormancy required TGF-β receptor-I (TGF-β-RI), TGF-β-RIII and SMAD1/5 activation to induce p27. In lungs, a metastasis ‘permissive soil’ with low TGF-β2 levels, DTC dormancy was short-lived and followed by metastatic growth. Importantly, systemic inhibition of TGF-β-RI or p38α/β activities awakened dormant DTCs, fuelling multi-organ metastasis. Our work reveals a ‘seed and soil’ mechanism where TGF-β2 and TGF-β-RIII signalling through p38α/β regulates DTC dormancy and defines restrictive (BM) and permissive (lung) microenvironments for HNSCC metastasis.Fil: Bragado, Paloma. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados UnidosFil: Estrada, Yeriel. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados UnidosFil: Parikh, Falguni. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados UnidosFil: Krause, Sarah. University Hospital of Schleswig-Holstein; AlemaniaFil: Capobianco, Carla Sabrina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Oncología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Farina, Hernán Gabriel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Oncología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schewe, Denis M.. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados UnidosFil: Aguirre Ghiso, Julio A.. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados Unido

    Dormancy Signatures and Metastasis in Estrogen Receptor Positive and Negative Breast Cancer

    Get PDF
    Breast cancers can recur after removal of the primary tumor and treatment to eliminate remaining tumor cells. Recurrence may occur after long periods of time during which there are no clinical symptoms. Tumor cell dormancy may explain these prolonged periods of asymptomatic residual disease and treatment resistance. We generated a dormancy gene signature from published experimental models and applied it to both breast cancer cell line expression data as well as four published clinical studies of primary breast cancers. We found that estrogen receptor (ER) positive breast cell lines and primary tumors have significantly higher dormancy signature scores (P<0.0000001) than ER- cell lines and tumors. In addition, a stratified analysis combining all ER+ tumors in four studies indicated 2.1 times higher hazard of recurrence among patients whose tumors had low dormancy scores (LDS) compared to those whose tumors had high dormancy scores (HDS) (p<0.000005). The trend was shown in all four individual studies. Suppression of two dormancy genes, BHLHE41 and NR2F1, resulted in increased in vivo growth of ER positive MCF7 cells. The patient data analysis suggests that disseminated ER positive tumor cells carrying a dormancy signature are more likely to undergo prolonged dormancy before resuming metastatic growth. Furthermore, genes identified with this approach might provide insight into the mechanisms of dormancy onset and maintenance as well as dormancy models using human breast cancer cell lines

    Semaphorin-3F/Neuropilin-2 Transcriptional Expression as a Predictive Biomarker of Occult Lymph Node Metastases in HNSCC.

    Full text link
    The expression of the semaphorin-3F (SEMA3F) and neuropilin-2 (NRP2) is involved in the regulation of lymphangiogenesis. The present study analyzes the relationship between the transcriptional expression of the SEMA3F-NRP2 genes and the presence of occult lymph node metastases in patients with cN0 head and neck squamous cell carcinomas. We analyzed the transcriptional expression of SEMA3F and NRP2 in a cohort of 53 patients with cN0 squamous cell carcinoma treated with an elective neck dissection. Occult lymph node metastases were found in 37.7% of the patients. Patients with occult lymph node metastases (cN0/pN+) had significantly lower SEMA3F expression values than patients without lymph node involvement (cN0/pN0). Considering the expression of the SEMA3F-NRP2 genes, patients were classified into two groups according to the risk of occult nodal metastasis: Group 1 (n = 34), high SEMA3F/low NRP2 expression, with a low risk of occult nodal involvement (14.7% cN0/pN+); Group 2 (n = 19), low SEMA3F or high SEMA3F/high NRP2 expression, with a high risk of occult nodal involvement (78.9% cN0/pN+). Multivariate analysis showed that patients in Group 2 had a 26.2 higher risk of lymph node involvement than patients in Group 1. There was a significant relationship between the transcriptional expression values of the SEMA3F-NRP2 genes and the risk of occult nodal metastases

    Breast mammographic Density: stromal implications on breast cancer detection and therapy

    Get PDF
    Current evidences state clear that both normal development of breast tissue as well as its malignant progression need many-sided local and systemic communications between epithelial cells and stromal components. During development, the stroma, through remarkably regulated contextual signals, affects the fate of the different mammary cells regarding their specification and differentiation. Likewise, the stroma can generate tumour environments that facilitate the neoplastic growth of the breast carcinoma. Mammographic density has been described as a risk factor in the development of breast cancer and is ascribed to modifications in the composition of breast tissue, including both stromal and glandular compartments. Thus, stroma composition can dramatically affect the progression of breast cancer but also its early detection since it is mainly responsible for the differences in mammographic density among individuals. This review highlights both the pathological and biological evidences for a pivotal role of the breast stroma in mammographic density, with particular emphasis on dense and malignant stromas, their clinical meaning and potential therapeutic implications for breast cancer patients

    C3G is upregulated in hepatocarcinoma, contributing to tumor growth and progression and to HGF/MET pathway activation

    Get PDF
    [EN]The complexity of hepatocellular carcinoma (HCC) challenges the identification of disease-relevant signals. C3G, a guanine nucleotide exchange factor for Rap and other Ras proteins, plays a dual role in cancer acting as either a tumor suppressor or promoter depending on tumor type and stage. The potential relevance of C3G upregulation in HCC patients suggested by database analysis remains unknown. We have explored C3G function in HCC and the underlying mechanisms using public patient data and in vitro and in vivo human and mouse HCC models. We found that C3G is highly expressed in progenitor cells and neonatal hepatocytes, whilst being down-regulated in adult hepatocytes and re-expressed in human HCC patients, mouse HCC models and HCC cell lines. Moreover, high C3G mRNA levels correlate with tumor progression and a lower patient survival rate. C3G expression appears to be tightly modulated within the HCC program, influencing distinct cell biological properties. Hence, high C3G expression levels are necessary for cell tumorigenic properties, as illustrated by reduced colony formation in anchorage-dependent and -independent growth assays induced by permanent C3G silencing using shRNAs. Additionally, we demonstrate that C3G down-regulation interferes with primary HCC tumor formation in xenograft assays, increasing apoptosis and decreasing proliferation. In vitro assays also revealed that C3G down-regulation enhances the pro-migratory, invasive and metastatic properties of HCC cells through an epithelial-mesenchymal switch that favors the acquisition of a more mesenchymal phenotype. Consistently, a low C3G expression in HCC cells correlates with lung metastasis formation in mice. However, the subsequent restoration of C3G levels is associated with metastatic growth. Mechanistically, C3G down-regulation severely impairs HGF/MET signaling activation in HCC cells. Collectively, our results indicate that C3G is a key player in HCC. C3G promotes tumor growth and progression, and the modulation of its levels is essential to ensure distinct biological features of HCC cells throughout the oncogenic program. Furthermore, C3G requirement for HGF/MET signaling full activation provides mechanistic data on how it works, pointing out the relevance of assessing whether high C3G levels could identify HCC responders to MET inhibitors

    Semaphorin-3F/Neuropilin-2 Transcriptional Expression as a Predictive Biomarker of Occult Lymph Node Metastases in HNSCC

    Get PDF
    Altres ajuts: Fondo Europeo de Desarrollo Regional (FEDER), A Way to Build Europe; Asociación Española contra el Cáncer (LABAE18025AVIL).The expression of the semaphorin-3F (SEMA3F) and neuropilin-2 (NRP2) is involved in the regulation of lymphangiogenesis. The present study analyzes the relationship between the transcriptional expression of the SEMA3F-NRP2 genes and the presence of occult lymph node metastases in patients with cN0 head and neck squamous cell carcinomas. We analyzed the transcriptional expression of SEMA3F and NRP2 in a cohort of 53 patients with cN0 squamous cell carcinoma treated with an elective neck dissection. Occult lymph node metastases were found in 37.7% of the patients. Patients with occult lymph node metastases (cN0/pN+) had significantly lower SEMA3F expression values than patients without lymph node involvement (cN0/pN0). Considering the expression of the SEMA3F-NRP2 genes, patients were classified into two groups according to the risk of occult nodal metastasis: Group 1 (n = 34), high SEMA3F/low NRP2 expression, with a low risk of occult nodal involvement (14.7% cN0/pN+); Group 2 (n = 19), low SEMA3F or high SEMA3F/high NRP2 expression, with a high risk of occult nodal involvement (78.9% cN0/pN+). Multivariate analysis showed that patients in Group 2 had a 26.2 higher risk of lymph node involvement than patients in Group 1. There was a significant relationship between the transcriptional expression values of the SEMA3F-NRP2 genes and the risk of occult nodal metastases

    C3G Protein, a New Player in Glioblastoma

    Get PDF
    C3G (RAPGEF1) is a guanine nucleotide exchange factor (GEF) for GTPases from the Ras superfamily, mainly Rap1, although it also acts through GEF-independent mechanisms. C3G regulates several cellular functions. It is expressed at relatively high levels in specific brain areas, playing important roles during embryonic development. Recent studies have uncovered different roles for C3G in cancer that are likely to depend on cell context, tumour type, and stage. However, its role in brain tumours remained unknown until very recently. We found that C3G expression is downregulated in GBM, which promotes the acquisition of a more mesenchymal phenotype, enhancing migration and invasion, but not proliferation. ERKs hyperactivation, likely induced by FGFR1, is responsible for this pro-invasive effect detected in C3G silenced cells. Other RTKs (Receptor Tyrosine Kinases) are also dysregulated and could also contribute to C3G effects. However, it remains undetermined whether Rap1 is a mediator of C3G actions in GBM. Various Rap1 isoforms can promote proliferation and invasion in GBM cells, while C3G inhibits migration/invasion. Therefore, other RapGEFs could play a major role regulating Rap1 activity in these tumours. Based on the information available, C3G could represent a new biomarker for GBM diagnosis, prognosis, and personalised treatment of patients in combination with other GBM molecular markers. The quantification of C3G levels in circulating tumour cells (CTCs) in the cerebrospinal liquid and/or circulating fluids might be a useful tool to improve GBM patient treatment and survival

    C3G downregulation induces the acquisition of a mesenchymal phenotype that enhances aggressiveness of glioblastoma cells

    Get PDF
    © The Author(s) 2021.Glioblastoma (GBM) is the most aggressive tumor from the central nervous system (CNS). The current lack of efficient therapies makes essential to find new treatment strategies. C3G, a guanine nucleotide exchange factor for some Ras proteins, plays a dual role in cancer, but its function in GBM remains unknown. Database analyses revealed a reduced C3G mRNA expression in GBM patient samples. C3G protein levels were also decreased in a panel of human GBM cell lines as compared to astrocytes. Based on this, we characterized C3G function in GBM using in vitro and in vivo human GBM models. We report here that C3G downregulation promoted the acquisition of a more mesenchymal phenotype that enhanced the migratory and invasive capacity of GBM cells. This facilitates foci formation in anchorage-dependent and -independent growth assays and the generation of larger tumors in xenografts and chick chorioallantoic membrane (CAM) assays, but with a lower cell density, as proliferation was reduced. Mechanistically, C3G knock-down impairs EGFR signaling by reducing cell surface EGFR through recycling inhibition, while upregulating the activation of several other receptor tyrosine kinases (RTKs) that might promote invasion. In particular, FGF2, likely acting through FGFR1, promoted invasion of C3G-silenced GBM cells. Moreover, ERKs mediate this invasiveness, both in response to FGF2- and serum-induced chemoattraction. In conclusion, our data show the distinct dependency of GBM tumors on C3G for EGF/EGFR signaling versus other RTKs, suggesting that assessing C3G levels may discriminate GBM patient responders to different RTK inhibition protocols. Hence, patients with a low C3G expression might not respond to EGFR inhibitors.This work was supported by grants from the Spanish Ministry of Economy and Competitiveness [SAF2016-76588-C2-1-R and PID2019-104143RB-C22 to AP; and SAF2016-76588-C2-2-R and PID2019-104143RB-C21 to CG], and by two grants from the Council of Education of Junta de Castilla y León, Spain [SA017U16 and SA078P20 to CG]. All funding was cosponsored by the European FEDER Program. SM and OH are recipients of FPU fellowships from Spanish Ministry of Education. CS was supported by a fellowship from Complutense University from Madrid. A G-U and MRF are supported by Madrid Community Program for Talent Attraction (MRF 2017-T1/BMD-5468). P. B. received support from BBVA (Becas Leonardo 2018, BBM-TRA-0041)

    Inhibition of RAC1 activity in cancer associated fibroblasts favours breast tumour development through IL-1β upregulation

    Get PDF
    Cancer-associated fibroblasts (CAFs) are highly abundant stromal components in the tumour microenvironment. These cells contribute to tumorigenesis and indeed, they have been proposed as a target for anti-cancer therapies. Similarly, targeting the Rho-GTPase RAC1 has also been suggested as a potential therapeutic target in cancer. Here, we show that targeting RAC1 activity, either pharmacologically or by genetic silencing, increases the pro-tumorigenic activity of CAFs by upregulating IL-1β secretion. Moreover, inhibiting RAC1 activity shifts the CAF subtype to a more aggressive phenotype. Thus, as RAC1 suppresses the secretion of IL-1β by CAFs, reducing RAC1 activity in combination with the depletion of this cytokine should be considered as an interesting therapeutic option for breast cancer in which tumour cells retain intact IL-1β signalling.
    corecore