677 research outputs found

    DNA replication stress restricts ribosomal DNA copy number

    Get PDF
    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number

    Effect of Race on Prediction of Brain Amyloidosis by Plasma AÎČ42/AÎČ40, Phosphorylated Tau, and Neurofilament Light

    Get PDF
    OBJECTIVE: To evaluate whether plasma biomarkers of amyloid (AÎČ42/AÎČ40), tau (p-tau181 and p-tau231) and neuroaxonal injury (neurofilament light chain [NfL]) detect brain amyloidosis consistently across racial groups. METHODS: Individuals enrolled in studies of memory and aging who self-identified as African American (AA) were matched 1:1 to self-identified non-Hispanic White (NHW) individuals by age, APOE Δ4 carrier status and cognitive status. Each participant underwent blood and cerebrospinal fluid (CSF) collection, and amyloid PET was performed in 103 participants (68%). Plasma AÎČ42/AÎČ40 was measured by a high-performance immunoprecipitation-mass spectrometry assay. Plasma p-tau181, p-tau231, and NfL were measured by Simoa immunoassays. CSF AÎČ42/AÎČ40 and amyloid PET status were used as primary and secondary reference standards of brain amyloidosis, respectively. RESULTS: There were 76 matched pairs of AA and NHW participants (n=152 total). For both AA and NHW groups, the median age was 68.4 years, 42% were APOE Δ4 carriers and 91% were cognitively normal. AA were less likely than NHW to have brain amyloidosis by CSF AÎČ42/AÎČ40 (22% versus 43% positive, p = 0.003). The Receiver Operating Characteristic Area Under the Curve (ROC AUC) of CSF AÎČ42/AÎČ40 status with the plasma biomarkers was as follows: AÎČ42/AÎČ40, 0.86 (95% confidence intervals [CI] 0.79-0.92); p-tau181, 0.76 (0.68-0.84); p-tau231, 0.69 (0.60-0.78); and NfL, 0.64 (0.55-0.73). In models predicting CSF AÎČ42/AÎČ40 status with plasma AÎČ42/AÎČ40 that included covariates (age, sex, APOE Δ4 carrier status, race, and cognitive status), race did not affect the probability of CSF AÎČ42/AÎČ40 positivity. In similar models based on plasma p-tau181, p-tau231 or Nfl, AA had a lower probability of CSF AÎČ42/AÎČ40 positivity (Odds Ratio [OR] 0.31 [95% CI 0.13-0.73], OR 0.30 [0.13-0.71]) and OR 0.27 [0.12-0.64], respectively. Models of amyloid PET status yielded similar findings. CONCLUSIONS: Models predicting brain amyloidosis using a high performance plasma AÎČ42/AÎČ40 assay may provide an accurate and consistent measure of brain amyloidosis across AA and NHW groups, but models based on plasma p-tau181, p-tau231, and NfL may perform inconsistently and could result in disproportionate misdiagnosis of AA

    Antioxidant pathways are up-regulated during biological nitrogen fixation to prevent ROS-induced nitrogenase inhibition in Gluconacetobacter diazotrophicus

    Get PDF
    Gluconacetobacter diazotrophicus, an endophyte isolated from sugarcane, is a strict aerobe that fixates N2. This process is catalyzed by nitrogenase and requires copious amounts of ATP. Nitrogenase activity is extremely sensitive to inhibition by oxygen and reactive oxygen species (ROS). However, the elevated oxidative metabolic rates required to sustain biological nitrogen fixation (BNF) may favor an increased production of ROS. Here, we explored this paradox and observed that ROS levels are, in fact, decreased in nitrogen-fixing cells due to the up-regulation of transcript levels of six ROS-detoxifying genes. A cluster analyses based on common expression patterns revealed the existence of a stable cluster with 99.8% similarity made up of the genes encoding the α-subunit of nitrogenase Mo–Fe protein (nifD), superoxide dismutase (sodA) and catalase type E (katE). Finally, nitrogenase activity was inhibited in a dose-dependent manner by paraquat, a redox cycler that increases cellular ROS levels. Our data revealed that ROS can strongly inhibit nitrogenase activity, and G. diazotrophicus alters its redox metabolism during BNF by increasing antioxidant transcript levels resulting in a lower ROS generation. We suggest that careful controlled ROS production during this critical phase is an adaptive mechanism to allow nitrogen fixation

    An approach to addressing governance from a health system framework perspective

    Get PDF
    As countries strive to strengthen their health systems in resource constrained contexts, policy makers need to know how best to improve the performance of their health systems. To aid these decisions, health system stewards should have a good understanding of how health systems operate in order to govern them appropriately. While a number of frameworks for assessing governance in the health sector have been proposed, their application is often hindered by unrealistic indicators or they are overly complex resulting in limited empirical work on governance in health systems. This paper reviews contemporary health sector frameworks which have focused on defining and developing indicators to assess governance in the health sector. Based on these, we propose a simplified approach to look at governance within a common health system framework which encourages stewards to take a systematic perspective when assessing governance. Although systems thinking is not unique to health, examples of its application within health systems has been limited. We also provide an example of how this approach could be applied to illuminate areas of governance weaknesses which are potentially addressable by targeted interventions and policies. This approach is built largely on prior literature, but is original in that it is problem-driven and promotes an outward application taking into consideration the major health system building blocks at various levels in order to ensure a more complete assessment of a governance issue rather than a simple input-output approach. Based on an assessment of contemporary literature we propose a practical approach which we believe will facilitate a more comprehensive assessment of governance in health systems leading to the development of governance interventions to strengthen system performance and improve health as a basic human right

    The Role of Zinc in the Modulation of Neuronal Proliferation and Apoptosis

    Get PDF
    Although a requirement of zinc (Zn) for normal brain development is well documented, the extent to which Zn can modulate neuronal proliferation and apoptosis is not clear. Thus, we investigated the role of Zn in the regulation of these two critical events. A low Zn availability leads to decreased cell viability in human neuroblastoma IMR-32 cells and primary cultures of rat cortical neurons. This occurs in part as a consequence of decreased cell proliferation and increased apoptotic cell death. In IMR-32 cells, Zn deficiency led to the inhibition of cell proliferation through the arrest of the cell cycle at the G0/G1 phase. Zn deficiency induced apoptosis in both proliferating and quiescent neuronal cells via the intrinsic apoptotic pathway. Reductions in cellular Zn triggered a translocation of the pro-apoptotic protein Bad to the mitochondria, cytochrome c release, and caspase-3 activation. Apoptosis is the resultant of the inhibition of the prosurvival extracellular-signal-regulated kinase, the inhibition of nuclear factor-kappa B, and associated decreased expression of antiapoptotic proteins, and to a direct activation of caspase-3. A deficit of Zn during critical developmental periods can have persistent effects on brain function secondary to a deregulation of neuronal proliferation and apoptosis

    Mycobacterium tuberculosis Rv2419c, the missing glucosyl-3-phosphoglycerate phosphatase for the second step in methylglucose lipopolysaccharide biosynthesis

    Get PDF
    Mycobacteria synthesize intracellular methylglucose lipopolysaccharides (MGLP) proposed to regulate fatty acid synthesis. Although their structures have been elucidated, the identity of most biosynthetic genes remains unknown. The first step in MGLP biosynthesis is catalyzed by a glucosyl-3-phosphoglycerate synthase (GpgS, Rv1208 in Mycobacterium tuberculosis H37Rv). However, a typical glucosyl-3-phosphoglycerate phosphatase (GpgP, EC3.1.3.70) for dephosphorylation of glucosyl-3-phosphoglycerate to glucosylglycerate, was absent from mycobacterial genomes. We purified the native GpgP from Mycobacterium vanbaalenii and identified the corresponding gene deduced from amino acid sequences by mass spectrometry. The M. tuberculosis ortholog (Rv2419c), annotated as a putative phosphoglycerate mutase (PGM, EC5.4.2.1), was expressed and functionally characterized as a new GpgP. Regardless of the high specificity for glucosyl-3-phosphoglycerate, the mycobacterial GpgP is not a sequence homolog of known isofunctional GpgPs. The assignment of a new function in M. tuberculosis genome expands our understanding of this organism's genetic repertoire and of the early events in MGLP biosynthesis

    Ellagitannins of the fruit rind of pomegranate (Punica granatum) antagonize in vitro the host inflammatory response mechanisms involved in the onset of malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sun-dried rind of the immature fruit of pomegranate (<it>Punica granatum</it>) is presently used as a herbal formulation (OMARIA, Orissa Malaria Research Indigenous Attempt) in Orissa, India, for the therapy and prophylaxis of malaria. The pathogenesis of cerebral malaria, a complication of the infection by <it>Plasmodium falciparum</it>, is an inflammatory cytokine-driven disease associated to an up-regulation and activity of metalloproteinase-9 and to the increase of TNF production. The <it>in vitro </it>anti-plasmodial activity of <it>Punica granatum (Pg) </it>was recently described. The aim of the present study was to explore whether the anti-malarial effect of OMARIA could also be sustained via other mechanisms among those associated to the host immune response.</p> <p>Methods</p> <p>From the methanolic extract of the fruit rind, a fraction enriched in tannins (<it>Pg</it>-FET) was prepared. MMP-9 secretion and expression were evaluated in THP-1 cells stimulated with haemozoin or TNF. The assays were conducted in the presence of the <it>Pg</it>-FET and its chemical constituents ellagic acid and punicalagin. The effect of urolithins, the ellagitannin metabolites formed by human intestinal microflora, was also investigated.</p> <p>Results</p> <p><it>Pg</it>-FET and its constituents inhibited the secretion of MMP-9 induced by haemozoin or TNF. The effect occurred at transcriptional level since MMP-9 mRNA levels were lower in the presence of the tested compounds. Urolithins as well inhibited MMP-9 secretion and expression. <it>Pg</it>-FET and pure compounds also inhibited MMP-9 promoter activity and NF-kB-driven transcription.</p> <p>Conclusions</p> <p>The beneficial effect of the fruit rind of <it>Punica granatum </it>for the treatment of malarial disease may be attributed to the anti-parasitic activity and the inhibition of the pro-inflammatory mechanisms involved in the onset of cerebral malaria.</p

    Elevated creatine kinase activity in primary hepatocellular carcinoma

    Get PDF
    BACKGROUND: Inconsistent findings have been reported on the occurrence and relevance of creatine kinase (CK) isoenzymes in mammalian liver cells. Part of this confusion might be due to induction of CK expression during metabolic and energetic stress. METHODS: The specific activities and isoenzyme patterns of CK and adenylate kinase (AdK) were analysed in pathological liver tissue of patients undergoing orthotopic liver transplantation. RESULTS: The brain-type, cytosolic BB-CK isoenzyme was detected in all liver specimens analysed. Conversely, CK activity was strongly increased and a mitochondrial CK (Mi-CK) isoenzyme was detected only in tissue samples of two primary hepatocellular carcinomas (HCCs). CONCLUSION: The findings do not support significant expression of CK in normal liver and most liver pathologies. Instead, many of the previous misconceptions in this field can be explained by interference from AdK isoenzymes. Moreover, the data suggest a possible interplay between p53 mutations, HCC, CK expression, and the growth-inhibitory effects of cyclocreatine in HCC. These results, if confirmed, could provide important hints at improved therapies and cures for HCC

    Response of the photosynthetic apparatus to a flowering-inductive period by water stress in Citrus

    Full text link
    The photosynthetic responses to a flowering-inductive water-stress period and recovery were studied and compared in two Citrus species. Under greenhouse conditions, Fino lemon and Owari satsuma trees were subjected to moderate (-2 MPa at predawn) and severe (-3 MPa) water stress levels and were re-watered after 60 days. Vegetative growth was inhibited during the stress assays, and strong defoliation levels were reported, especially in Fino lemon. In both species, bud sprouting was induced after re-watering. Flowers and vegetative shoots developed in Owari satsuma after a drought period, and the development was independent of the stress level. In Fino lemon, vegetative shoots and flowers were primarily formed after moderate and severe stress, respectively. The photosynthetic rate and stomatal conductance were reduced by water stress, and a marked increase in water-use efficiency at the moderate water deficit level was observed. Nevertheless, the photosynthetic apparatus was not damaged, since the maximum quantum yield, photosynthetic pigment concentrations and Rubisco level and activity did not change. Furthermore, the measured malonyldialdehyde (MDA) and peroxidase activity indicated that oxidative stress was not specifically triggered by water stress in our study. Therefore, the gas exchange, fluorescence and biochemical parameters suggested that diffusional limitations to photosynthesis predominated in both of the studied Citrus species, and explained the rapid recovery of the photosynthetic parameters after rehydration. The net CO 2 fixation rate and stomatal conductance were recovered within 24 h in Fino lemon, whereas 3 days were required in Owari satsuma. This suggests the presence of some metabolic limitations in the latter species. Furthermore, the sensibility of the defoliation rates, the accumulation of proline and the stomatal behaviour in response to water stress indicated a higher drought tolerance of Fino lemon, according to its better acclimation to hot climates. © 2011 Springer-Verlag.The authors thank Dr. J. Moreno and co-workers from the Departamento de Bioquimica of the Universidad de Valencia for his help and support in the Rubisco assays, and Dr. F. Fornes, Dr. A. Calatayud and Dr. E. Primo-Millo for the critical review of the manuscript. This work was funded by the Universitat Politecnica de Valencia, Spain (Ayudas para primeros proyectos de investigacion PAID06-06).Ávila ResĂ©ndiz, C.; Guardiola Barcena, JL.; GonzĂĄlez Nebauer, S. (2012). Response of the photosynthetic apparatus to a flowering-inductive period by water stress in Citrus. Trees - Structure and Function. 26(3):833-840. https://doi.org/10.1007/s00468-011-0657-4S833840263Addicott FT (1982) Abscission. University of California Press, BerkeleyBajji M, Kinet JM, Lutts S (1998) Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding callus. Plant Sci 137:131–142Barbera G, Fatta-del-Bosco G, Lo-Cascio B (1985) Effect of water stress on lemon summer bloom: the Forzatura technique in the Sicilian citrus industry. Acta Hortic 171:391–397Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207Bota J, Medrano H, Flexas J (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol 162:671–681Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Cassin J, Bourdeaut A, Fougue V, Furon V, Gaillard JP, LeBourdelles J, Montagut G, Moreuil C (1969) The influence of climate upon blooming of Citrus in tropical areas. Proc Int Soc Citrus 1:315–323Castel JR, Buj A (1990) Response of Salustiana oranges to high frequency deficit irrigation. Irrig Sci 11:121–127Chaikiatitiyos S, Menzel CM, Rasmussen TS (1994) Floral induction in tropical fruit trees: effects of temperature and water supply. J Hortic Sci 69:397–415Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560Costa JM, Ortuño MF, Chaves M (2007) Deficit irrigation as a strategy to save water: physiology and potential application to horticulture. J Integr Plant Biol 49:1421–1434Davenport TL (1990) Citrus flowering. Hortic Rev 12:249–408Davies FS, Albrigo LG (1994) Citrus. CAB International, Wallingford, pp 126–134Domingo R, Ruiz-SĂĄnchez MC, SĂĄnchez-Blanco MJ, Torrecillas A (1996) Water relations, growth and yield of Fino lemon trees under regulated deficit irrigation. Irrig Sci 16:115–123Erismann ND, Machado EC, Tucci MLS (2008) Photosynthetic limitation by CO2 diffusion in drought stressed orange leaves on three rootstocks. Photosynth Res 96:163–172Flexas J, Bota J, GalmĂ©s J, Medrano H, Ribas-CarbĂł M (2006) Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol Plant 127:343–352GallĂ© A, Florez-Sarasa I, Tomas M, Pou A, Medrano H, Ribas-CarbĂł M, Flexas J (2009) The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): acclimation or limitation? J Exp Bot 60:2379–2390GalmĂ©s J, Medrano H, Flexas J (2007) Photosynthetic limitations in response to water stress and recovery in Mediterrenean plants with different growth forms. New Phytol 175:81–93GarcĂ­a-Luis A, Kanduser M, Santamarina P, Guardiola JL (1992) Low temperature influence on flowering in Citrus. The separation of inductive and bud dormancy releasing effects. Physiol Plant 86:648–652GarcĂ­a-SĂĄnchez F, Syvertsen JP, Gimeno V, BotĂ­a P, PĂ©rez-PĂ©rez JG (2007) Responses to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency. Physiol Plant 130:532–542Genty B, Briantais JM, Baker NR (1989) The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92GĂłmez-Cadenas A, Tadeo FR, Talon M, Primo-Millo E (1996) Leaf abscission induced by ethylene in water-stressed intact seedlings of Cleopatra mandarin requires previous abscisic acid accumulation in roots. Plant Physiol 112:401–408Gordo O, Sanz JJ (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Glob Chang Biol 16:1082–1106Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–190Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. California Agricultural Experiment Station Circular no. 347, p 32IPCC (2001) Climate change 2001. In: Houghton JT (ed) The scientific basis. Cambridge University Press, CambridgeLawlor DW (1995) The effects of water deficit on photosynthesis. In: Smirnoff N (ed) Environment and plant metabolism. Bios Scientific Publishers, Oxford, pp 129–160Lichtenthaler HK, Buschmann C (2001) Current protocols in food analytical chemistry, F4.2.1 and F4.3.1. John Wiley and Sons, Inc, NJLorimer GH, Badger MR, Andrews TJ (1977) D-Ribulose-1, 5-bisphosphate carboxilase-oxigenase. Improved methods for activation and assay of catalytic activities. Anal Biochem 78:66–75Miyashita K, Tanakamaru S, Maitani T, Kimura K (2005) Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ Exp Bot 53:205–214Nir I, Leshem B, Goren R (1972) Effects of water stress, gibberellic acid and 2-chloroethylammoniumchloride (CCC) ob flower differentiation in Eureka lemon trees. J Am Soc Hortic Sci 97:774–778Peñarrubia L, Moreno J (1988) Ribulose 1, 5-bisphosphate carboxylase oxygenase from citrus leaves. Phytochemistry 27:1999–2004PĂ©rez-PĂ©rez JG, Syvertsen JP, BotĂ­a P, GarcĂ­a-SĂĄnchez F (2007) Leaf water relations and net gas exchange responses of salinized carrizo citrange seedlings during drought stress and recovery. Ann Bot 100:335–345PĂ©rez-PĂ©rez JG, Robles JM, Tovar JC, BotĂ­a P (2009) Response to drought and salt stress of lemon ‘Fino 49’ under field conditions: water relations, osmotic adjustment and gas Exchange. Sci Hortic 122:83–90Reynolds M, Tuberosa R (2008) Translational research impacting on crop productivity in drought-prone environments. Curr Opin Plant Biol 11:171–179Ruiz-SĂĄnchez MC, Domingo R, SavĂ© R, Biel C, Torrecillas A (1997) Effects of water stress and rewatering on leaf water relations of lemon plants. Biol Plant 39:623–631Sarris D, Christodoulakis D, Körner C (2007) Recent decline in precipitation and tree growth in the eastern Mediterranean. Glob Chang Biol 13:1187–1200Sharkey TD (1990) Water-stress effects on photosynthesis. Photosynthetica 24:651Southwick SM, Davenport TL (1986) Characterization of water stress and low temperature effects on flower induction in Citrus. Plant Physiol 81:26–29Spiegel-Roy P, Goldschmidt EE (1996) Biology of Citrus. Cambridge University Press, Cambridge, pp 131–136Syvertsen JP, Lloyd J (1994) Citrus. In: Schaffer BA, Andersen PC (eds) Handbook of environmental physiology of fruit crops. Vol II Subtropical and tropical crops. CRC Press, Boca Raton, pp 65–99Syvertsen JP (1996) Water stress and carbon budgets. Proc Int Soc Citrus 1:46–50Valladares F, Arrieta S, Aranda I, Lorenzo D, SĂĄnchez-GĂłmez D, Tena D, Suarez F, Pardos JA (2005) Shade tolerance, photoinhibition sensitivity and phenotypic plasticity of Illex aquifolium in continental Mediterranean sites. Tree Physiol 25:1041–1052Vu JCV, Yelenosky G (1988) Solar irradiance and drought stress effects on the activity and concentration of ribulose bisphosphate carboxylase in ‘Valencia’ orange leaves. Isr J Bot 37:245–25
    • 

    corecore