556 research outputs found

    Effects of Quark Spin Flip on the Collins Fragmentation Function in a Toy Model

    Full text link
    The recent extension of the NJL-jet model to hadronization of transversely polarized quarks allowed the study of the Collins fragmentation function. Both favored and unfavored Collins fragmentation functions were generated, the latter purely by multiple hadron emissions, with 1/2 moments of opposite sign in the region of the light-cone momentum fraction zz accessible in current experiments. Hints of such behavior has been seen in the measurements in several experiments. Also, in the transverse momentum dependent (TMD) hadron emission probabilities, modulations of up to fourth order in sine of the polar angle were observed, while the Collins effect describes just the linear modulations. A crucial part of the extended model was the calculation of the quark spin flip probability after each hadron emission in the jet. Here we study the effects of this probability on the resulting unfavored and favored Collins functions by setting it as a constant and use a toy model for the elementary single hadron emission probabilities. The results of the Monte Carlo simulations showed that preferential quark spin flip in the elementary hadron emission is needed to generate the favored and unfavored Collins functions with opposite sign 1/2 moments. For the TMD hadron emission modulations, we showed that the model quark spin flip probabilities are a partial source of the higher rode modulations, while the other source is the Collins modulation of the remnant quark from the hadron emission recoil.Comment: 7 pages, 6 figures. To appear in proceedings of HITES 2012, Conference in Honor of Jerry P. Draayer, Horizons of Innovative Theories, Experiments, and Supercomputing in Nuclear Physics, New Orleans, Louisiana, June 4-7, 201

    Color Transparency via Coherent Exclusive rho Production

    Get PDF
    We examine the potential of the COMPASS experiment at CERN to study color transparency via exclusive coherent vector meson production in hard muon-nucleus scattering. It is demonstrated that COMPASS has high sensitivity to test this important prediction of perturbative QCD.Comment: Feasibility study for COMPASS collaboration, 3 pages, no figures, 1 table. This contribution is based on talk presented at the Workshop on Spin Physics, Trento, Italy, July 2001. The conference www site is http://ECTstar.ect.it/contents.html The proceedings of the workshop will be published as a special issue of Nuclear Physics B (proc suppl), eds. S Bass, A De Roeck and A Deshpande. A more complete 26 page feasibility study with 7 figures and 3 tables is available as A. Sandacz et al., hep-ex/0106076 Revision of 26 Sept. for Ref. 11 modificatio

    Extraction of the πNN\pi NN coupling constant from NN scattering data

    Full text link
    We reexamine Chew's method for extracting the πNN\pi NN coupling constant from np differential cross section measurements. Values for this coupling are extracted below 350 MeV, in the potential model region, and up to 1 GeV. The analyses to 1~GeV have utilized 55 data sets. We compare these results to those obtained via χ2\chi^2 mapping techniques. We find that these two methods give consistent results which are in agreement with previous Nijmegen determinations.Comment: 12 pages of text plus 2 figures. Revtex file and postscript figures available via anonymous FTP at ftp://clsaid.phys.vt.edu/pub/n

    The evolution of H{\sc ii} galaxies: Testing the bursting scenario through the use of self-consistent models

    Full text link
    We have computed a series of realistic and self-consistent models of the emitted spectra of H{\sc ii} galaxies. Our models combine different codes of chemical evolution, evolutionary population synthesis and photoionization. The emitted spectrum of H{\sc ii} galaxies is reproduced by means of the photoionization code CLOUDY, using as ionizing spectrum the spectral energy distribution of the modelled H{\sc ii} galaxy, which in turn is calculated according to a Star Formation History (SFH) and a metallicity evolution given by a chemical evolution model that follows the abundances of 15 different elements. The contribution of emission lines to the broad-band colours is explicitly taken into account. The results of our code are compared with photometric and spectroscopic data of H{\sc ii} galaxies. Our technique reproduces observed diagnostic diagrams, abundances, equivalent width-colour and equivalent width-metallicity relations for local H{\sc ii} galaxies.Comment: 13 figures and 2 tables, accepted for publication in MNRAS Main Journa

    The ionization mechanism of NGC 185: how to fake a Seyfert galaxy?

    Full text link
    NGC 185 is a dwarf spheroidal satellite of the Andromeda galaxy. From mid-1990s onwards it was revealed that dwarf spheroidals often display a varied and in some cases complex star formation history. In an optical survey of bright nearby galaxies, NGC 185 was classified as a Seyfert galaxy based on its emission line ratios. However, although the emission lines in this object formally place it in the category of Seyferts, it is probable that this galaxy does not contain a genuine active nucleus. NGC 185 was not detected in radio surveys either in 6 or 20 cm, or X-ray observations, which means that the Seyfert-like line ratios may be produced by stellar processes. In this work, we try to identify the possible ionization mechanisms for this galaxy. We discussed the possibility of the line emissions being produced by planetary nebulae (PNe), using deep spectroscopy observations obtained with GMOS-N, at Gemini. Although the fluxes of the PNe are high enough to explain the integrated spectrum, the line ratios are very far from the values for the Seyfert classification. We then proposed that a mixture of supernova remnants and PNe could be the source of the ionization, and we show that a composition of these two objects do mimic Seyfert-like line ratios. We used chemical evolution models to predict the supernova rates and to support the idea that these supernova remnants should be present in the galaxy.Comment: 9 pages, 7 figures, accepted for publication in MNRA

    Cosmic Supernova Rates and the Hubble Sequence

    Get PDF
    We compute the type Ia, Ib/c and II supernova (SN) rates as functions of the cosmic time for galaxies of different morphological types. We use four different chemical evolution models, each one reproducing the features of a particular morphological type: E/S0, S0a/b, Sbc/d and Irr galaxies. We essentially describe the Hubble sequence by means of decreasing efficiency of star formation and increasing infall timescale. These models are used to study the evolution of the SN rates per unit luminosity and per unit mass as functions of cosmic time and as functions of the Hubble type. Our results indicate that: (i) the observed increase of the SN rate per unit luminosity and unit mass from early to late galaxy types is accounted for by our models. Our explanation of this effect is related to the fact that the latest Hubble types have the highest star formation rate per unit mass; (ii) By adopting a Scalo (1986) initial mass function in spiral disks, we find that massive single stars ending their lives as Wolf-Rayet objects are not sufficient to account for the observed type Ib/c SN rate per unit mass. Less massive stars in close binary systems can give instead a significant contribution to the local Ib/c SN rates. On the other hand, with the assumption of a Salpeter (1955) IMF for all galaxy types, single massive WR stars are sufficient to account for the observed type Ib/c SN rate. (iii) Our models allow us to reproduce the observed type Ia SN rate density up to redshift z~1. We predict an increasing type Ia SN rate density with redshift, reaching a peak at redshift z >= 3, because of the contribution of massive spheroids.Comment: ApJ, accepted for publication. 17 pages, 11 figure
    • …
    corecore